www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Menge in Gaußscher Zahlenebene
Menge in Gaußscher Zahlenebene < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge in Gaußscher Zahlenebene: Idee
Status: (Frage) beantwortet Status 
Datum: 13:17 Di 25.06.2013
Autor: grafzahl123

Aufgabe
Beschreiben Sie die Menge
[mm] M= { z|z \in\IC:z\bar{z}-z(2+i)-\bar{z}(\bar{2+i})+1=0 [/mm]
in der Gaußschen Zahlenebene
(über dem zweiten (2+i) soll ein kompletter Querstrich sein, aber irgendwie wird der nicht richtig angezeigt)

Okay, es gilt ja in den komplexen Zahlen:
z=a+ib => [mm] \bar{z}=a-ib [/mm]
wenn ich das mal in die obrige Gleichung einsetze sieht das ja wie folgt aus:
=> (a+ib)(a-ib)-(a+ib)(2+i)-(a-ib)(2-i)+1=0
=> [mm] a^2+b^2-2a-2ib-ai+b-2a+ai+2ib+b+1=0 [/mm]
=> [mm] a^2+b^2-4a+2b+1=0 [/mm]
=> [mm] a^2-4a+(b+1)^2=0 [/mm]

macht das Sinn, was ich da gemacht habe, oder bin ich komplett aufm Holzweg? Sollte dies der Fall sein würde ich mich über ein paar Anregungen freuen.
Schöne Grüße,
Grafzahl

        
Bezug
Menge in Gaußscher Zahlenebene: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Di 25.06.2013
Autor: fred97


> Beschreiben Sie die Menge
>  [mm]M= { z|z \in\IC:z\bar{z}-z(2+i)-\bar{z}(\bar{2+i})+1=0[/mm]
>  in
> der Gaußschen Zahlenebene
>  (über dem zweiten (2+i) soll ein kompletter Querstrich
> sein, aber irgendwie wird der nicht richtig angezeigt)
>  Okay, es gilt ja in den komplexen Zahlen:
>  z=a+ib => [mm]\bar{z}=a-ib[/mm]

>  wenn ich das mal in die obrige Gleichung einsetze sieht
> das ja wie folgt aus:
>  => (a+ib)(a-ib)-(a+ib)(2+i)-(a-ib)(2-i)+1=0

>  => [mm]a^2+b^2-2a-2ib-ai+b-2a+ai+2ib+b+1=0[/mm]

>  => [mm]a^2+b^2-4a+2b+1=0[/mm]

>  => [mm]a^2-4a+(b+1)^2=0[/mm]

>  
> macht das Sinn, was ich da gemacht habe

Ja, es ist alles richtig

> , oder bin ich
> komplett aufm Holzweg? Sollte dies der Fall sein würde ich
> mich über ein paar Anregungen freuen.


Ich rege an:

[mm]a^2-4a+(b+1)^2=0[/mm]  [mm] \gdw[/mm]  [mm]a^2-4a+4+(b+1)^2=4[/mm]

Hilft das ?

FRED

>  Schöne Grüße,
>  Grafzahl


Bezug
                
Bezug
Menge in Gaußscher Zahlenebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Di 25.06.2013
Autor: grafzahl123

Hallo,
erstmal vielen Dank für die schnelle Antwort!
Das bringt mich auf jeden Fall einen Schritt weiter:
[mm] (a-2)^2+(b+1)^2=4 [/mm]

Mein Problem ist: Ich dachte ich brauche einen Real- und einen Imaginärteil (irgendwas in der Form x+iy) um etwas in der Gaußschen Zahlenebene zu beschreiben, aber das "i" fehlt hier doch irgendwie :-(

Bezug
                        
Bezug
Menge in Gaußscher Zahlenebene: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Di 25.06.2013
Autor: schachuzipus

Hallo Grafzahl,

das ist richtig.
Du hast nun Bedingungen an die reellen Zahlen a und b gefunden. Lösungen bzw. Elemente aus der Ausgangsmenge sind also all jene komplexen Zahlen z=a+b*i mit der von dir gefundenen Bedingung.
Welches Gebilde in der Ebene wird denn geometrisch durch dein Ergebnis beschrieben?


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de