www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Menge komplexer Zahlen
Menge komplexer Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge komplexer Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Do 08.12.2011
Autor: aco92

Aufgabe
Skizzieren Sie den durch die Ungleichung
[mm] |\bruch{z-8}{2z-1}| \le [/mm] 2 für z ∈ [mm] \IC [/mm] angegebenen
Bereich in der Gaußschen Zahlenebene

Hi,
komme bei dieser Menge nicht weiter.
Habe versucht für z (x+iy) einzusetzen und das umzuformen:

[mm] |\bruch{x-8 + iy}{2x-1 + 2iy}| \le [/mm] 2

= [mm] \bruch{\wurzel{(x-8)^2+y^2}}{\wurzel{(2x-1)^2+(2y)^2}} \le [/mm] 2

= [mm] \bruch{(x-8)^2+y^2}{(2x-1)^2+(2y)^2} \le2 [/mm]

Das kleinergleichzeichen dreht sich nicht um, da der bruch ja durch die quadrate positiv sein muss?

= [mm] \bruch{x^2-16x+64+y^2}{4x^2-4x+1+4y^2} \le [/mm] 4

= [mm] x^2-16x+64+y^2 \le 4(4x^2-4x+1+4y^2) [/mm]

= [mm] x^2-16x+64+y^2 \le 16x^2 [/mm] -16x + 4 [mm] +16y^2 [/mm]

= [mm] -15x^2 [/mm] + 60 [mm] \le 15y^2 [/mm]

= [mm] -x^2 [/mm] +4 [mm] \le y^2 [/mm]

Hier komme ich nicht weiter, da ich die Wurzel ja nur für  [mm] 0\le [/mm] x [mm] \le [/mm] 2 und [mm] -2\le [/mm] x < 0 ziehen darf. Andernfalls wird der linke Term ja negativ.

Wie komme ich jetzt weiter? War mein vorgehen zum bestimmen der zu skizzierenden Menge grundsätzlich richtig?

mfG

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Menge komplexer Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 Do 08.12.2011
Autor: Fulla

Hallo aco92,

> Skizzieren Sie den durch die Ungleichung
>  [mm] |\bruch{z-8}{2z-1}| \le[/mm] 2 für z ∈ [mm]\IC[/mm] angegebenen
>  Bereich in der Gaußschen Zahlenebene
>  Hi,
>  komme bei dieser Menge nicht weiter.
>  Habe versucht für z (x+iy) einzusetzen und das
> umzuformen:
>  
> [mm]|\bruch{x-8 + iy}{2x-1 + 2iy}| \le[/mm] 2
>  
> = [mm]\bruch{\wurzel{(x-8)^2+y^2}}{\wurzel{(2x-1)^2+(2y)^2}} \le[/mm]
> 2
>  
> = [mm]\bruch{(x-8)^2+y^2}{(2x-1)^2+(2y)^2} \le2[/mm]
>  
> Das kleinergleichzeichen dreht sich nicht um, da der bruch
> ja durch die quadrate positiv sein muss?
>  
> = [mm]\bruch{x^2-16x+64+y^2}{4x^2-4x+1+4y^2} \le[/mm] 4
>  
> = [mm]x^2-16x+64+y^2 \le 4(4x^2-4x+1+4y^2)[/mm]
>  
> = [mm]x^2-16x+64+y^2 \le 16x^2[/mm] -16x + 4 [mm]+16y^2[/mm]
>  
> = [mm]-15x^2[/mm] + 60 [mm]\le 15y^2[/mm]
>  
> = [mm]-x^2[/mm] +4 [mm]\le y^2[/mm]

Soweit, so gut.

> Hier komme ich nicht weiter, da ich die Wurzel ja nur für  
> [mm]0\le[/mm] x [mm]\le[/mm] 2 und [mm]-2\le[/mm] x < 0 ziehen darf. Andernfalls wird
> der linke Term ja negativ.

Du musst hier ja nicht unbedingt die Wurzel ziehen.

> Wie komme ich jetzt weiter? War mein vorgehen zum bestimmen
> der zu skizzierenden Menge grundsätzlich richtig?

Wenn du deine letzte Gleichung ein wenig umformst, steht da
[mm]x^2+y^2\ge 4[/mm]
und das sollte dir bekannt vorkommen!

Welche Punkte [mm](x|y)[/mm] erfüllen denn [mm]x^2+y^2=4=2^2[/mm]? Und welche Punkte erfüllen [mm]x^2+y^2\ge2^2[/mm]?

Du bist kurz vor'm Ziel!

Lieben Gruß,
Fulla


Bezug
                
Bezug
Menge komplexer Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:09 Do 08.12.2011
Autor: aco92

Danke für die Antwort!

Jetzt seh ich's auch. Ist ja die Formel für den Kreis mit Radius 2 um den Ursprung. Also liegt die gesuchte Menge außerhalb der Kreisfläche.

MfG

Bezug
                        
Bezug
Menge komplexer Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:52 Fr 09.12.2011
Autor: Fulla

Genau! [ok]

(Du musst dir aber noch Gedanken machen, ob der Rand des Kreises dazugehört oder nicht)


Lieben Gruß,
Fulla


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de