www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Menge skizzieren
Menge skizzieren < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge skizzieren: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 17:13 Di 28.09.2010
Autor: Marius6d

Aufgabe
Skizzieren Sie die Mengen, die durch folgende Gleichungen bzw. Ungleichungen definiert sind, in der komplexen Ebene:

b) |z - z0| [mm] \ge [/mm] |z - z1|, wobei z0 und z1 gegebene komplexe Zahlen sind.

c) [mm] \bruch{|z-1|}{|z+1+i|} [/mm] = 2

Also bei b) habe ich keine Ahnung wie ich vorgehen soll, wie muss ich mit den gegebenen Zahlen z0 und z1 umgehen?

bei c) habe ich wie folgt gerechnet:
zuerst einmal * |z+1+i| gerechnet, also:

|z-1| = 2 * |z+1+i|

[mm] \wurzel{x^2 + y^2 -1^2} [/mm] = 2* [mm] \wurzel{x^2 + y^2 -1^2 + 1^2} [/mm]

dann quadriert:

[mm] x^2 [/mm] + [mm] y^2 -1^2 [/mm] = 4 * [mm] (x^2 [/mm] + [mm] y^2 -1^2 [/mm] + [mm] 1^2) [/mm]

gekürzt und ausgerechnet:

[mm] x^2 [/mm] + [mm] y^2 [/mm] + 1 = [mm] 4x^2 [/mm] + [mm] 4y^2 [/mm]

...

1 = [mm] 3x^2 [/mm] + [mm] 3y^2 [/mm] dann habich mal 3 ausgeklammert:

1 = [mm] 3*(x^2 [/mm] + [mm] y^2) [/mm] dann  / 3

[mm] \bruch{1}{3} [/mm] = [mm] x^2 [/mm] + [mm] y^2 [/mm]

Das ist ja dann eine Kreisgleichung mit Radius [mm] r=\wurzel{\bruch{1}{3}} [/mm]

Aber irgendwie kann das nicht stimmen, denn laut unserem Assistenten soll die Lösung in der Form [mm] (x+a)^2 [/mm] + [mm] (x+b)^2 [/mm] = [mm] c^2 [/mm] sein. Wo liegt der Fehler?




        
Bezug
Menge skizzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Di 28.09.2010
Autor: abakus


> Skizzieren Sie die Mengen, die durch folgende Gleichungen
> bzw. Ungleichungen definiert sind, in der komplexen Ebene:
>  
> b) |z - z0| [mm]\ge[/mm] |z - z1|, wobei z0 und z1 gegebene komplexe
> Zahlen sind.
>  
> c) [mm]\bruch{|z-1|}{|z+1+i|}[/mm] = 2
>  Also bei b) habe ich keine Ahnung wie ich vorgehen soll,
> wie muss ich mit den gegebenen Zahlen z0 und z1 umgehen?
>  
> bei c) habe ich wie folgt gerechnet:
>  zuerst einmal * |z+1+i| gerechnet, also:
>  
> |z-1| = 2 * |z+1+i|
>  
> [mm]\wurzel{x^2 + y^2 -1^2}[/mm] = 2* [mm]\wurzel{x^2 + y^2 -1^2 + 1^2}[/mm]

Hallo,
der Realteil von z-1 ist (x-1) und der Imaginärteil ist y.
Also gilt [mm] |z|=\wurzel{(x-1)^2 + y^2 }=\wurzel{x^2-2x+1 + y^2 }. [/mm]
Da du auch in der zweiten Wurzel die binomische Formel nicht beachtet hast, ist auch da ein Fehler.

Gruß Abakus

>  
> dann quadriert:
>  
> [mm]x^2[/mm] + [mm]y^2 -1^2[/mm] = 4 * [mm](x^2[/mm] + [mm]y^2 -1^2[/mm] + [mm]1^2)[/mm]
>  
> gekürzt und ausgerechnet:
>  
> [mm]x^2[/mm] + [mm]y^2[/mm] + 1 = [mm]4x^2[/mm] + [mm]4y^2[/mm]
>  
> ...
>  
> 1 = [mm]3x^2[/mm] + [mm]3y^2[/mm] dann habich mal 3 ausgeklammert:
>  
> 1 = [mm]3*(x^2[/mm] + [mm]y^2)[/mm] dann  / 3
>  
> [mm]\bruch{1}{3}[/mm] = [mm]x^2[/mm] + [mm]y^2[/mm]
>  
> Das ist ja dann eine Kreisgleichung mit Radius
> [mm]r=\wurzel{\bruch{1}{3}}[/mm]
>  
> Aber irgendwie kann das nicht stimmen, denn laut unserem
> Assistenten soll die Lösung in der Form [mm](x+a)^2[/mm] + [mm](x+b)^2[/mm]
> = [mm]c^2[/mm] sein. Wo liegt der Fehler?
>  
>
>  


Bezug
                
Bezug
Menge skizzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Di 28.09.2010
Autor: Marius6d

Ok also dann rechne ich wie folgt:

[mm] \wurzel{(x-1)^2+y^2} [/mm] = 2* [mm] \wurzel{(x+1)^2+(y+1)^2} [/mm]

dann quadriere ich wieder:

[mm] (x-1)^2+y^2 [/mm] = 4 * [mm] (x+1)^2+(y+1)^2 [/mm]

und jetzt wenn ich die binome auflöse:

[mm] x^2 [/mm] -2x +1 [mm] +y^2 [/mm] = [mm] 4*(x^2 [/mm] + 2x + 1 + [mm] y^2 [/mm] + 2y +1)

ausmultipliziert:

[mm] x^2 [/mm] - 2x +1 [mm] +y^2 [/mm] = [mm] 4x^2 [/mm] +8x +4 [mm] +4y^2 [/mm] +8y +4

dann ergibt das:

[mm] -3x^2 [/mm] -10x [mm] -3y^2 [/mm] +8y = 7

Und wie muss ich jetz weiterfahren?

Bezug
                        
Bezug
Menge skizzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Di 28.09.2010
Autor: abakus


> Ok also dann rechne ich wie folgt:
>  
> [mm]\wurzel{(x-1)^2+y^2}[/mm] = 2* [mm]\wurzel{(x+1)^2+(y+1)^2}[/mm]
>  
> dann quadriere ich wieder:
>  
> [mm](x-1)^2+y^2[/mm] = 4 * [mm](x+1)^2+(y+1)^2[/mm]
>
> und jetzt wenn ich die binome auflöse:
>  
> [mm]x^2[/mm] -2x +1 [mm]+y^2[/mm] = [mm]4*(x^2[/mm] + 2x + 1 + [mm]y^2[/mm] + 2y +1)
>  
> ausmultipliziert:
>  
> [mm]x^2[/mm] - 2x +1 [mm]+y^2[/mm] = [mm]4x^2[/mm] +8x +4 [mm]+4y^2[/mm] +8y +4
>  
> dann ergibt das:
>  
> [mm]-3x^2[/mm] -10x [mm]-3y^2[/mm] +8y = 7
>  
> Und wie muss ich jetz weiterfahren?

Teile beide Seiten durch -3.
Mache dann sowohl für [mm] x^2 [/mm] und für [mm] y^2 [/mm] eine quadratische Ergänzung, um
[mm] (x+...)^2+(y-...)^2=... [/mm]
zu erhalten.


Bezug
        
Bezug
Menge skizzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Di 28.09.2010
Autor: schachuzipus

Hallo Marius6d,

> Skizzieren Sie die Mengen, die durch folgende Gleichungen
> bzw. Ungleichungen definiert sind, in der komplexen Ebene:
>
> b) |z - z0| [mm]\ge[/mm] |z - z1|, wobei z0 und z1 gegebene komplexe
> Zahlen sind.
>
> c) [mm]\bruch{|z-1|}{|z+1+i|}[/mm] = 2
> Also bei b) habe ich keine Ahnung wie ich vorgehen soll,
> wie muss ich mit den gegebenen Zahlen z0 und z1 umgehen?
>

Rechnerisch:

Nun, schaue nochmal ins Skript, wie eine komplexe Geradengleichung aussieht!

Benutze weiter, dass [mm]|z-z_1|\le|z-z_0|\gdw |z-z_1|^2\le|z-z_0|^2[/mm]

Erinnere dich, wie du [mm]|w|^2[/mm] für [mm]w\in\IC[/mm] anders schreiben kannst...


Geometrisch:

[mm]|z-w|[/mm] bezeichnet den (euklid.) Abstand von [mm]z[/mm] zu [mm]w[/mm]

Mit [mm]|z-z_1|\le|z-z_0|[/mm] sind also all jene [mm]z\in\IC[/mm] gesucht, die von [mm]z_1[/mm] einen Abstand haben, der nicht größer als der Abstand zu [mm]z_0[/mm] ist.


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de