www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Mengen
Mengen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen: Es seien die Mengen M=....
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:02 So 26.10.2008
Autor: aga88


        
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 So 26.10.2008
Autor: uliweil

Hallo Agata,

ist es tatsächlich wahr, dass, wie mir auch meine 3 schulpflichtigen Kinder, Bekannte, die Lehrer sind, und meine an einer Hochschule tätige Frau versichern, Mengenlehre total aus dem Mathe-Lehrplan an Schulen gestrichen wurde? Ich muss es wohl oder übel glauben.

Also dann:
Nachdem M aufzählend, N aber beschreibend angegeben wurde ist es sinnvoll, N erstmal in die aufzählende Schreibweise zu überführen.
Die Beschreibung sagt, dass die Elemente aus M quadriert und dann um 1 subtrahiert werden sollen [mm] (x^{2} [/mm] - 1).
Dies ergibt N = {3, 0, -1, 8, 15} oder schöner sortiert N = {-1, 0, 3, 8, 15}. Bei Mengen kommt es auf die Sortierung nicht an, doppelte Elemente werden nur einmal aufgeführt.
a) |M| = 7, |N| = 5 (der Betrag einer Menge ist die Anzahl ihrer Elemente.)
b) M [mm] \cap [/mm] N = {-1, 0, 3} (den Durchschnitt zweier Mengen bilden die Elemente, die beiden Mengen gemeinsam sind)
    M [mm] \cup [/mm] N = {-2, -1, 0, 1, 2, 3, 4, 8, 15} (die Vereinigung zweier Mengen bilden die Element beider Mengen zusammen, die Mengen werden also einfach zusammengeschüttet)
   Mit M und N kann ich nichts anfangen.
c) {(x,y) [mm] \in [/mm] MxN | x=y} = {(-1,-1),(0,0), (3,3)} (ein kartesisches Produkt zweier Mengen MxN ist zunächst einmal die Menge aller Paare (x,y) mit x [mm] \in [/mm] M und y [mm] \in [/mm] N; dabei kommt es auf die Reihenfolge innerhalb des Paares an, also (1,2) ist nicht gleich (2,1). Hier wurde jetzt noch eine bestimmte Eigenschaft der Paare gefordert, nämlich x = y; dies erfüllen nur die oben angegebenen Paare.)
{(x,y) [mm] \in [/mm] MxN | x<y} = {(-2,-1), (-2,0), (-2,3), (-2,8), (-2,15), (-1,0), (-1,3), (-1,8), (-1,15), (0,3), (0,8), (0, 15), (1,3), (1,8), (1,15), (2,3), (2,8), (2,15), (3,8), (3,15), (4,8), (4,15)} (ich hoffe ich habe keines verrgessen)
d) {A [mm] \in \mathcal{P}(N) [/mm] | |A| = 3} = {{-1,0,3}, {-1,0,8}, {-1,0,15}, {-1,3,8}, {-1,3,15}, {-1,8,15},{0,3,8}, {0,3,15}, {0,8,15}, {3,8,15}}
Hierbei kommen jetzt mehrere neue Begriffe zur Anwendung. Zunächst  muss man sich klarmachen, dass man auch Mengen als Elemente von Mengen auffassen kann.
Eine Teilmenge A einer Menge M ist ein Ausschnitt der Menge (eben ein Teil, wie der Name schon sagt), dabei ist die leere Menge Teilmenge jeder Menge und jede Menge ist Teilmenge von sich selbst.
Eine Potenzmenge [mm] \mathcal{P} [/mm] (N) einer Menge N ist die Menge aller Teilmengen von N, die leere Menge und die Menge selbst eingeschlossen. Ist |N| = n so ist die Anzahl der Teilmengen von N, also [mm] |\mathcal{P}(N)| [/mm] = [mm] 2^{n}. [/mm] Hier soll nun die Menge der dreielementigen Teilmengen gebildet werden. Dies sind [mm] \vektor{5 \\ 3} [/mm] = 10 Elemente.

Soweit der Crashkurs in Mengenlehre.

Gruß

Uli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de