www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Mengen
Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen: leere Menge und Potenzmenge
Status: (Frage) beantwortet Status 
Datum: 15:19 Di 04.11.2008
Autor: L1NK

Aufgabe
Sind die Aussagen wahr oder falsch. Wenn ja, dann begründe deine Aussage.
Potenzmenge kürze ich mi P ab.
1. Die Menge P(leere Menge) hat genau ein Element.
2. Die Menge P({leere Menge}) hat genau ein Element.
3. Es gilt: P(P(leere Menge)) ist Teilmenge von P({leere Menge})
4. Es gilt: P({leere Menge}) ist Teilmenge von P(P(leere Menge)).  

hallo,
also ich würde behaupten dass alle 4 wahr sind.
Wenn nicht, könnte ihr mir das auch begründen??
Gruss L.

        
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Di 04.11.2008
Autor: schachuzipus

Hallo L1nk,



> Sind die Aussagen wahr oder falsch. Wenn ja, dann begründe
> deine Aussage.
>  Potenzmenge kürze ich mi P ab.
>  1. Die Menge P(leere Menge) hat genau ein Element.
>  2. Die Menge P({leere Menge}) hat genau ein Element.
>  3. Es gilt: P(P(leere Menge)) ist Teilmenge von P({leere
> Menge})
>  4. Es gilt: P({leere Menge}) ist Teilmenge von P(P(leere
> Menge)).

Puh, das ist so nur extrem unschön zu entziffern, benutze doch bitte unseren Formeleditor, die leere Menge kannst du so eingeben \emptyset ergibt [mm] \emptyset [/mm]

> hallo,
>  also ich würde behaupten dass alle 4 wahr sind.
>  Wenn nicht, könnte ihr mir das auch begründen??

Ich würde doch meinen, dass (2) nicht stimmen kann.

Wenn du eine Menge M hast, die n Elemente enthält, so enthält die Potenzmege P(M) [mm] 2^n [/mm] Elemente

In (2) hast du [mm] $M:=\{\emptyset\}$, [/mm] also eine Menge, die genau ein Element, nämlich die leere Menge enthält

Damit muss P(M) [mm] 2^1=2 [/mm] Elemente enthalten.

Bedenke, dass die Potenzmenge P(M) stets die leere Menge [mm] \emptyset [/mm] und die gesamte Menge M entält

Also in (2) [mm] $P(M)=\{\emptyset,\{\emptyset\}\}$ [/mm]

Der Rest sieht mir stimmig aus, wenn ich es denn recht entziffert habe


>  Gruss L.


LG

schachuzipus

Bezug
                
Bezug
Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 Di 04.11.2008
Autor: L1NK

Gut, damit haste mir schonmal weitergeholfen. Hatte mich auch vertan mit 2. ^^
Also zu der Schreibweise:
Potenzmenge kürze ich mit "P" ab,
leere Menge mit "O",
Teilmenge mit "<".
Nun nochmal zu den beiden übrigen Aufgaben.
3. Es gilt: P(P(O)) < P({O})
4. Es gilt: P({O}) < P(P(O))

Könnte mir das einer begründen, warum diese beiden Aussagen gelten?
Gruss L.

Bezug
                        
Bezug
Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:23 Di 04.11.2008
Autor: schachuzipus

Hallo nochmal,

> Gut, damit haste mir schonmal weitergeholfen. Hatte mich
> auch vertan mit 2. ^^
>  Also zu der Schreibweise:
>  Potenzmenge kürze ich mit "P" ab,
>  leere Menge mit "O",
>  Teilmenge mit "<".

naja ...

>  Nun nochmal zu den beiden übrigen Aufgaben.
>  3. Es gilt: P(P(O)) < P({O})
>  4. Es gilt: P({O}) < P(P(O))
>  
> Könnte mir das einer begründen, warum diese beiden Aussagen
> gelten?

Schreib dir beide Mengen explizit hin, dann siehst du, dass sie gleich sind

Was ist [mm] $P(\{\emptyset\})$? [/mm]

Was ist [mm] $P(P(\emptyset))$? [/mm] Bilde es von innen nach außen, bestimme also zuerst [mm] $P(\emptyset)$, [/mm] nenne das dann von mir aus $M$ und bestimme schlussendlich $P(M)$


LG

schachuzipus

>  Gruss L.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de