Mengen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:11 Mi 31.10.2012 | Autor: | petapahn |
Hallo allerseits,
Wie kann man die Offenheit eines Intervalls ]x,y[ beweisen?
Nach Definition muss die Umgebung eine Teilmenge von ]x;y[ sein, also
[mm] \forall [/mm] x [mm] \in [/mm] ]x;y[ [mm] \exists \varepsilon [/mm] >0: ]x- [mm] \varepsilon; x+\varepsilon[ \subseteq [/mm] ]x;y[. Dies ist aber jetz nur eine Definition, die wahrscheinlich als Beweis nicht reichen wird. Soll ich für [mm] \varepsilon [/mm] iwelche Werte hernehmen (wenn ja welche) oder wie soll ich das beweisen?
Viele Grüße petapahn
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:44 Mi 31.10.2012 | Autor: | Marcel |
Hallo,
> Hallo allerseits,
> Wie kann man die Offenheit eines Intervalls ]x,y[
> beweisen?
> Nach Definition muss die Umgebung
Umgebung von was?
> eine Teilmenge von ]x;y[
> sein, also
> [mm]\forall[/mm] x [mm]\in[/mm] ]x;y[
Autsch: Du darfst doch nicht [mm] $x\,$ [/mm] einmal als Intervallgrenze, und einmal
als Punkt im Intervall benutzen. Die Intervallgrenze variiert doch nicht
mit einem Punkt des Intervalles - [mm] $x,y\,$ [/mm] sind hier zwar als beliebig, aber
in einer Betrachtung dann als fest anzusehen (insbesondere ist nur
der Fall [mm] $x
insbesondere offen!) Kurz: [mm] $x,y\,$ [/mm] haben während der Beweisführung
die Rolle von "Parametern"!
D.h. schreibe: [mm] $\forall x_0 \in [/mm] ]x,y[: [mm] \exists \varepsilon=\varepsilon_{x_0} [/mm] > 0$ so, dass...
> [mm]\exists \varepsilon[/mm] >0: ]x-
> [mm]\varepsilon; x+\varepsilon[ \subseteq[/mm] ]x;y[. Dies ist aber
> jetz nur eine Definition,
Mit einem Fehler behaftet, wie ich Dir oben erklärte!
> die wahrscheinlich als Beweis
> nicht reichen wird.
Natürlich nicht:
> Soll ich für [mm]\varepsilon[/mm] iwelche Werte
> hernehmen (wenn ja welche) oder wie soll ich das beweisen?
Mach' Dir mal eine Skizze: Zeichne ein Intervall [mm] $]x,y[\,$ [/mm] auf dem
Zahlenstrahl ein. Nimm' einen Punkt [mm] $x_0\,$ [/mm] aus diesem Intervall
her! (Es muss [mm] $x_0 \not=x$ [/mm] und [mm] $x_0 \not=y$ [/mm] sein, weil [mm] $]x,y[\,$
[/mm]
ja eben keine "Randpunkte" (linker Rand, rechter Rand) enthält!)
Betrachte nun [mm] $\varepsilon_{x,x_0}:=|x_0-x|$ [/mm] und [mm] $\varepsilon_{y,x_0}:=|y-x_0|\,.$ [/mm] Warum sind diese beiden Werte $> [mm] 0\,$?
[/mm]
Warum ist dann der kleinere dieser beiden Werte $> [mm] 0\,$? [/mm]
(Für [mm] $x_0=(x+y)/2\,$ [/mm] sind die beiden gleich - "kleinere" meint hier eben
sowas wie "kleinergleich", und nicht echt kleiner!)
Beweise: Wählt man das Minimum dieser beiden Werte als [mm] $\varepsilon=\varepsilon_{x_0}\,,$ [/mm] so folgt die Behauptung!
(D.h. ist [mm] $\varepsilon\,$ [/mm] so gewählt wie oben, so gilt: Für alle $r [mm] \in \IR$
[/mm]
mit [mm] $|r-x_0| [/mm] < [mm] \varepsilon$ [/mm] folgt schon $r [mm] \in ]x,y[\,.$)
[/mm]
P.S. Alternativ kannst Du auch ein solch' offenes Intervall [mm] $]a,b[\,$ [/mm] nennen.
Dann steht da, dass Du ZU ZEIGEN hast:
Für alle $x [mm] \in [/mm] ]a,b[$ ist zu zeigen: Es existiert ein [mm] $\varepsilon=\varepsilon_x [/mm] > 0$ so,
dass...
(Die Definition speziell umschreiben bringt Dich nur auf den Weg, was Du
eigentlich ZU ZEIGEN hast - wenn man formuliert, was man beweisen will,
dann hat man das noch nicht bewiesen!)
Und wie gesagt: Nimm' dann für $x [mm] \in [/mm] ]a,b[$ die Abstände von [mm] $x\,$ [/mm] zu
- dem linken Intervallrandpunkt [mm] $a\,$
[/mm]
- dem rechten Intervallrandpunkt [mm] $b\,$
[/mm]
und setze [mm] $\varepsilon=\varepsilon_x$ [/mm] dann als "den kleineren" (kleiner
im Sinne von "kleinergleich") dieser beiden Abstände fest!
Das ist das gleiche wie oben, aber vielleicht irritieren Dich so die
Variablenbezeichnungen weniger...?!
Gruß,
Marcel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:48 Mi 31.10.2012 | Autor: | petapahn |
Danke für die ausführliche Antwort. Das mit dem x war eine Unaufmerksamkeit von mir. Ich habe den Beweis auch soweit verstanden, nur eine Zeile von dir leuchtet mir nicht ein:
> Für alle [mm]r \in \IR[/mm]
> mit [mm]|r-x_0| < \varepsilon[/mm] folgt schon
> [mm]r \in ]x,y[\,.[/mm])
>
Denn wenn man zb annimmt dass [mm] \varepsilon [/mm] = [mm] \varepsilon_{x,x_{0}} [/mm] und die Zahl r liegt ganz nah an y, dann ist doch r-x > [mm] \varepsilon, [/mm] obwohl r [mm] \in [/mm] ]x,y[
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:12 Mi 31.10.2012 | Autor: | Marcel |
Hallo,
> Danke für die ausführliche Antwort. Das mit dem x war
> eine Unaufmerksamkeit von mir. Ich habe den Beweis auch
> soweit verstanden, nur eine Zeile von dir leuchtet mir
> nicht ein:
> > Für alle [mm]r \in \IR[/mm]
> > mit [mm]|r-x_0| < \varepsilon[/mm] folgt
> schon
> > [mm]r \in ]x,y[\,.[/mm])
> >
> Denn wenn man zb annimmt dass [mm]\varepsilon[/mm] =
> [mm]\varepsilon_{x,x_{0}}[/mm] und die Zahl r liegt ganz nah an y,
> dann ist doch r-x > [mm]\varepsilon,[/mm] obwohl r [mm]\in[/mm] ]x,y[
kannst Du die Frage präziser stellen - ich verstehe gerade nicht, was
Du eigentlich fragen willst:
Dass für alle $r [mm] \in ]x_0-\varepsilon,\;x_0+\varepsilon[$ [/mm] auch $r [mm] \in ]x,y[\,$
[/mm]
gilt, folgt alleine wegen der Dreiecksungleichung. (Schreib's Dir hin!)
Und für alle $r [mm] \in ]x_0-\varepsilon,\;x_0+\varepsilon[$ [/mm] gilt zwangsweise
[mm] $$|r-x_0| [/mm] < [mm] \varepsilon\,,$$
[/mm]
denn es gelten ja die beiden Ungleichungen
1. [mm] $r-x_0 [/mm] < [mm] \varepsilon$
[/mm]
und
2. [mm] $-\varepsilon [/mm] < [mm] r-x_0$
[/mm]
genau dann, wenn [mm] $|r-x_0| [/mm] < [mm] \varepsilon\,.$ [/mm] Beweis' das, wenn's unklar
ist!
(Und natürlich: Wenn ich $r [mm] \to [/mm] y$ streben lasse, verlasse ich - eventuell
(man kann hier sagen, in welchem Falle das passieren kann: Und zwar,
wenn [mm] $x_0$ [/mm] echt näher an [mm] $x\,$ [/mm] liegt als an [mm] $y\,$) [/mm] - irgendwann [mm] $]x_0-\varepsilon,\;x_0+\varepsilon[$ [/mm]
bei obiger Wahl von [mm] $\varepsilon\,.$ [/mm] Aber für $r' [mm] \notin ]x_0-\varepsilon,\;x_0+\varepsilon[$ [/mm]
behaupten wir ja auch nix... also warum willst Du $r [mm] \to [/mm] y$ laufen lassen?)
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:37 Mi 31.10.2012 | Autor: | petapahn |
Danke, jetzt hab ichs verstanden. Ich habe mit meiner Frage gemeint, dass wenn r [mm] \in [/mm] ]x;y[, dass dann nicht gilt: |r- [mm] x_{0}| [/mm] < [mm] \varepsilon. [/mm] Aber das ist ja gar nicht relevant, sondern nur das Umgekehrte. Und das gilt!
Vielen Dank nochmal
petapahn
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:57 Mi 31.10.2012 | Autor: | Marcel |
Hallo,
> Danke, jetzt hab ichs verstanden. Ich habe mit meiner Frage
> gemeint, dass wenn r [mm]\in[/mm] ]x;y[, dass dann nicht gilt: |r-
> [mm]x_{0}|[/mm] < [mm]\varepsilon.[/mm] Aber das ist ja gar nicht relevant,
> sondern nur das Umgekehrte. Und das gilt!
genau!
> Vielen Dank nochmal
Gerne!
Gruß,
Marcel
|
|
|
|