www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Mengen, Teilmengen
Mengen, Teilmengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen, Teilmengen: Frage/Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:25 Mi 05.11.2014
Autor: Martin_Ph

Aufgabe
Gegeben sei die Menge M, welche alle rationalen Zahlen enthält, deren ganzzahliger Zähler und Nenner zwischen 1 und 5 (beide eingeschlossen) liegen und der Zähler kleiner als der Nenner ist.
Weiterhin seien die Teilmengen A,B,C von M gegeben durch die Eigenschaften:

A: Der Nenner ist eine Primzahl
B: Der Zähler ist 2
C: Der Nenner ist genau um eins größer als der Zähler

a) Geben Sie die Mengen M, A, B, C sowohl in der Form [mm] {x\in..|...} [/mm] als auch explizit durch ihre Elemente an

Die Mengen durch Elemente angeben war kein Problem. Bei der Form [mm] {x\in..|...} [/mm] hätte ich allerdings eine frage, ob man das so machen kann wie ich es getan habe:

M= { [mm] x\in\IQ|x=\bruch{a}{b}:(a,b)\in\IZ\wedge(a,b)\in[1,5]\wedge a\le [/mm] b} //kann man dies so schreiben?

A= { [mm] x\in M|b\in\IP [/mm] }

B= { [mm] x\in [/mm] M|a=2 }

C= { [mm] x\in [/mm] M|b=a+1 }

So Frage is nun darf ich dass so machen, sprich reicht bei A,B,C die genauere Definition wie oben gemacht?
Dachte mir da ich [mm] x\in [/mm] M sage gilt alles was bei M definiert ist auch, oder muss ich wirklich bei jeder Menge definieren dass [mm] x=\bruch{a}{b}........... [/mm] ist

        
Bezug
Mengen, Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Mi 05.11.2014
Autor: meili

Hallo,

> Gegeben sei die Menge M, welche alle rationalen Zahlen
> enthält, deren ganzzahliger Zähler und Nenner zwischen 1
> und 5 (beide eingeschlossen) liegen und der Zähler kleiner
> als der Nenner ist.
>  Weiterhin seien die Teilmengen A,B,C von M gegeben durch
> die Eigenschaften:
>  
> A: Der Nenner ist eine Primzahl
>  B: Der Zähler ist 2
>  C: Der Nenner ist genau um eins größer als der Zähler
>  
> a) Geben Sie die Mengen M, A, B, C sowohl in der Form
> [mm]{x\in..|...}[/mm] als auch explizit durch ihre Elemente an
>  Die Mengen durch Elemente angeben war kein Problem. Bei
> der Form [mm]{x\in..|...}[/mm] hätte ich allerdings eine frage, ob
> man das so machen kann wie ich es getan habe:
>  
> M=
> [mm]\{x\in\IQ|x=\bruch{a}{b}:(a,b)\in\IZ\wedge(a,b)\in[1,5]\wedge a\le b\}[/mm]
>  //kann man dies so schreiben?

$(a,b)$ sieht aus wie ein Tupel,
also entweder $a,b [mm] \in \IZ$ [/mm] und $a,b [mm] \in [/mm] [1,5]$ (ohne Klammern) oder
$(a,b) [mm] \in \IZ \times \IZ$ [/mm] und $(a,b) [mm] \in [/mm] [1,5] [mm] \times [/mm] [1,5]$ schreiben.

Es muss $a < b$ heißen, und nicht kleiner gleich.

Sonst ok

>  
> A=  [mm]\{x\in M|b\in\IP\}[/mm]
>  
> B= [mm]\{x\in M|a=2 \}[/mm]
>  
> C=  [mm]\{x\in M|b=a+1 \}[/mm]
>  
> So Frage is nun darf ich dass so machen, sprich reicht bei
> A,B,C die genauere Definition wie oben gemacht?
>  Dachte mir da ich [mm]x\in[/mm] M sage gilt alles was bei M
> definiert ist auch, oder muss ich wirklich bei jeder Menge
> definieren dass [mm]x=\bruch{a}{b}...........[/mm] ist

$x [mm] \in [/mm] M$ reicht, da davor M definiert wurde.
Aber du solltest $x = [mm] \bruch{a}{b} \in [/mm] M$ schreiben, da sonst in dem Teil
nach dem | unverständlich ist, was a und b sein sollen.

Gruß
meili


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de