www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Operations Research" - Mengen m.H. lin. Ungleichungen
Mengen m.H. lin. Ungleichungen < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen m.H. lin. Ungleichungen: Tipp
Status: (Frage) überfällig Status 
Datum: 18:57 Sa 16.04.2016
Autor: lisa2802

Aufgabe 1
Schreiben Sie folgende Mengen unter Benutzung linearer Ungleichungen
a)  { x [mm] \in \IR^n [/mm] : [mm] |x_{i}| \le [/mm] 1 , i = 1,...,n }

Aufgabe 2
Schreiben Sie folgende Mengen unter Benutzung linearer Ungleichungen
b)min(bzgl x) { max { [mm] c^T [/mm] x + [mm] c_{0}, d^T [/mm] x + [mm] d_{0} [/mm] } : Ax [mm] \ge [/mm] b }

Hallo ihr Lieben,

ich hab ehrlich gesagt keine Ahnung was unserer Prof. von mir möchte.

Könntet ihr mir bitte zum Verständnis beitragen?

zur a) x [mm] \in \IR^n [/mm] also ein Vektor mit n Einträgen, |x-{i}| [mm] \le [/mm] 1, soll das heißen alle vektoren der Länge [mm] \le [/mm] 1?

zur b) da soll ich erst  [mm] c^T [/mm] x + [mm] c_{0}, d^T [/mm] x + [mm] d_{0} [/mm] maximieren, also das größte Element davon finden  (nenne das jetzt einfach mal C, also C=max{ [mm] c^T [/mm] x + [mm] c_{0}, d^T [/mm] x + [mm] d_{0} [/mm] }. Also
min(bzgl x) { C : Ax [mm] \ge [/mm] b } und das bezüglich x minimieren. ich versteh gerade nur bahnhof :D


bitte bitte helft mir das zu verstehen und die Aufgabe richtig zu lösen. :D


        
Bezug
Mengen m.H. lin. Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Sa 16.04.2016
Autor: abakus

Die Ungleichungen sind
[mm] $-1\le x_1 \le [/mm] 1$
[mm] $-1\le x_2 \le [/mm] 1$
...

Bezug
                
Bezug
Mengen m.H. lin. Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Sa 16.04.2016
Autor: lisa2802


> Die Ungleichungen sind
> [mm]-1\le x_1 \le 1[/mm]
>  [mm]-1\le x_2 \le 1[/mm]
>  ...

wie kann denn ein n-dimensionaler Vektor kleiner bzw größer sein als ein Skalar?

Bezug
                        
Bezug
Mengen m.H. lin. Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Sa 16.04.2016
Autor: tobit09

Hallo lisa2802!


> > Die Ungleichungen sind
> > [mm]-1\le x_1 \le 1[/mm]
>  >  [mm]-1\le x_2 \le 1[/mm]
>  >  ...
> wie kann denn ein n-dimensionaler Vektor kleiner bzw
> größer sein als ein Skalar?

[mm] $x_1$ [/mm] bezeichnet die erste Komponente des Vektors x. Damit ist [mm] $x_1$ [/mm] ein Skalar, kein Vektor.


Viele Grüße
Tobias

Bezug
                                
Bezug
Mengen m.H. lin. Ungleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 Sa 16.04.2016
Autor: lisa2802

Na dann ist das schon möglich.

Danke ! :D

Bezug
        
Bezug
Mengen m.H. lin. Ungleichungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mo 18.04.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de