www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Mengen/teilmengen
Mengen/teilmengen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen/teilmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 Mo 31.10.2005
Autor: Mikke

also meine Frage:
X und Y sind Mengen mit der Abbildung X--> Y.
welche Eigenschaft muss man jetzt für f fordern damit A = [mm] f^{-1}(f(A)) [/mm] für alle teilmengen A  [mm] \subset [/mm] X.

also, dass A ja teilmenge von [mm] f^{-1}(f(A)) [/mm] ist ja klar. aber was brauch ich für Gleichheit?
Meine idee wäre ja die forderung dass f injektiv ist. aber wie kann ich das beweisen.
wäre für hilfe sehr dankbar.
mfg mikke

        
Bezug
Mengen/teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Mo 31.10.2005
Autor: Stefan

Hallo!

Genau, dies gilt genau dann, wenn $f$ injektiv ist.

Zunächst sei $f$ injektiv und $A [mm] \subset [/mm] X$ beliebig. Es sei $x [mm] \in f^{-1}(f(A))$ [/mm] beliebig. Dann gibt es ein $a [mm] \in [/mm] A$ mit $f(x)=f(a)$. Da $f$ injektiv ist, folgt $x=a [mm] \in [/mm] A$. Daraus folgt:$ [mm] f^{-1}(f(A)) \subset [/mm] A$.

Umgekehrt gelte: [mm] $A=f^{-1}(f(A))$. [/mm] Es seien $x,y [mm] \in [/mm] X$ mit $f(x)=f(y)$ bleibig gewählt. Dann gilt: [mm] $x\in f^{-1}(f(y))$, [/mm] also (für $A = [mm] \{y\}$) [/mm] mit $x [mm] \in \{y\}$, [/mm] also: $x=y$. Dies bedeutet, dass $f$ injektiv ist.

Liebe Grüße
Stefan

Bezug
                
Bezug
Mengen/teilmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:48 Di 01.11.2005
Autor: AgentLie


> [mm]x\in f^{-1}(f(y))[/mm],
> also (für [mm]A = \{y\}[/mm]) mit [mm]x \in \{y\}[/mm], also: [mm]x=y[/mm]. Dies
> bedeutet, dass [mm]f[/mm] injektiv ist.

Hallo, ich verstehe die Formulierung am Ende des Beweises mit der Mengenklammer um y nicht. Könntest du das bitte noch etwas ausführen. Könnte man nicht einfach noch umgekehrt [mm] y\in f^{-1}(f(x)) [/mm] schreiben und somit beweisen, dass x=y?

Bis dann!


Bezug
                        
Bezug
Mengen/teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Di 01.11.2005
Autor: Herby

Hallo AgentLie,

> > [mm]x\in f^{-1}(f(y))[/mm],
> > also (für [mm]A = \{y\}[/mm]) mit [mm]x \in \{y\}[/mm], also: [mm]x=y[/mm]. Dies
> > bedeutet, dass [mm]f[/mm] injektiv ist.
>
> Hallo, ich verstehe die Formulierung am Ende des Beweises
> mit der Mengenklammer um y nicht. Könntest du das bitte
> noch etwas ausführen.

ALso, ich verstehe das so:

1. Du hast eine Menge A, die aus dem Element y besteht.
2. Du nimmst jetzt ein beliebiges Element x aus dem Vorrat der vorhandenen Elemente
3. Dann muss ja offensichtlich x=y sein, da du nur ein Element in der Menge hast

> Könnte man nicht einfach noch
> umgekehrt [mm]y\in f^{-1}(f(x))[/mm] schreiben und somit beweisen,
> dass x=y?
>

Das war doch umgekehrt [haee]


lg
Herby


Bezug
                                
Bezug
Mengen/teilmengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:30 Di 01.11.2005
Autor: AgentLie


> Hallo AgentLie,
>  
> > > [mm]x\in f^{-1}(f(y))[/mm],
> > > also (für [mm]A = \{y\}[/mm]) mit [mm]x \in \{y\}[/mm], also: [mm]x=y[/mm]. Dies
> > > bedeutet, dass [mm]f[/mm] injektiv ist.
> >
> > Hallo, ich verstehe die Formulierung am Ende des Beweises
> > mit der Mengenklammer um y nicht. Könntest du das bitte
> > noch etwas ausführen.
>  
> ALso, ich verstehe das so:
>  
> 1. Du hast eine Menge A, die aus dem Element y besteht.
>  2. Du nimmst jetzt ein beliebiges Element x aus dem Vorrat
> der vorhandenen Elemente
>  3. Dann muss ja offensichtlich x=y sein, da du nur ein
> Element in der Menge hast
>  
> > Könnte man nicht einfach noch
> > umgekehrt [mm]y\in f^{-1}(f(x))[/mm] schreiben und somit beweisen,
> > dass x=y?
> >
>
> Das war doch umgekehrt [haee]
>  
>
> lg
>  Herby
>  

Vielen Dank. Die Formulierung war mir nur nicht ganz klar. Der Umgang mit Mengenklammern und allgemein Mengenlehre wird in der Schule viel zu wenig behandelt. Da sind die Formalia schon sehr ungewohnt. Also, nochmal vielen Dank für die Erklärung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de