www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Mengen und Relation
Mengen und Relation < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen und Relation: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 19:24 So 10.11.2013
Autor: Quadrat

Aufgabe
Gegeben die Menge A ={1,2,3,4}. Welche Eigenschaften hat die folgende Relation auf A? Handelt es sich um eine Äquivalenzrelation auf A?
[mm] R_1= [/mm] {(1,1),(2,1),(3,4),(2,2),(3,3),(4,4),(4,1)}

Wie genau wirkt sie die Relation aus ist es Symmetrisch, transitiv, reflexiv oder eine Äquivalenzrelation?
Zwar weiß ich was alle diese Begriffe bedeuten aber ich erkenne keinen Zusammenhang in der Aufgabe. Wie muss man dort genau vorgehen um solche AUfgaben zu lösen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Mengen und Relation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 So 10.11.2013
Autor: Al-Chwarizmi


> Gegeben die Menge A ={1,2,3,4}. Welche Eigenschaften hat
> die folgende Relation auf A? Handelt es sich um eine
> Äquivalenzrelation auf A?
> [mm]R_1=[/mm] {(1,1),(2,1),(3,4),(2,2),(3,3),(4,4),(4,1)}
>  Wie genau wirkt sie die Relation aus ist es Symmetrisch,
> transitiv, reflexiv oder eine Äquivalenzrelation?
> Zwar weiß ich was alle diese Begriffe bedeuten aber ich
> erkenne keinen Zusammenhang in der Aufgabe. Wie muss man
> dort genau vorgehen um solche Aufgaben zu lösen?


Hallo Quadrat,

           [willkommenmr]

so richtig weißt du , was diese Begriffe bedeuten,
erst dann, wenn du einen solchen Test auf die
Eigenschaften auch durchführen kannst.

Vergegenwärtige dir die Definitionen etwas
genauer als du es bisher getan hast. Am
einfachsten ist hier die Reflexivität zu prüfen.
Was würde sie für die vorliegende Relation [mm] R_1 [/mm]
bedeuten ?   "Für jedes Element x der Grundmenge A
gilt : .................(?)" . Da A nur 4 Elemente hat,
sollte dies sehr leicht nachzuprüfen sein.

Für den Nachweis der Symmetrie musst du
nicht einzelne Elemente x , sondern Paare
(x,y)  mit [mm] x\in [/mm] A und [mm] y\in [/mm] A überprüfen.
Symmetrie der Relation würde bedeuten:  
"Für jedes  Paar (x,y) mit [mm] x\in [/mm] A und [mm] y\in [/mm] A  
gilt : .................(?)"  Sobald du ein Paar
findest, das die Bedingung nicht erfüllt, bist
du schon fertig: die Symmetrie wäre dann
verletzt.

Transitivität, noch etwas komplexer, denn
hier geht es um Tripel (x,y,z). Aber auch hier:
wenn du ein einziges Tripel findest, das aus
der Reihe tanzt, bist du am Ziel. Der positive
Fall (mit Transitivität) ist natürlich eher
schwieriger, weil uns die Relation hier nur
als Aufzählung von Paaren bekannt ist.

Gib bitte bei folgenden Fragen deine Überlegungen
an, damit klar wird, wo es allenfalls hakt !

LG ,   Al-Chw.






Bezug
                
Bezug
Mengen und Relation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 So 10.11.2013
Autor: Quadrat

Hallo,
Alles klar also bei der Reflexivität gilt dass jedes Element aus A auch ein Element von B sein muss. Hab das so gelernt wenn A mit B verheiratet ist ist auch B mit A verheiraten. Bei der Symmetrie bin ich mir nicht mehr ganz sicher was das mit den paaren angeht. ist ebenfalls etwas unverständlich für mich. Aber ich weiß das wenn alle drei zutreffen es sich um eine Äquivalensrelation handeln muss oder?

Bezug
                        
Bezug
Mengen und Relation: Antwort
Status: (Antwort) fertig Status 
Datum: 00:29 Mo 11.11.2013
Autor: leduart

Hallo
hast du jetzt nachgeprüft ob die R reflexiv ist und sym?
gib daz entweder alle paare an, die das bestatigen oder ein par was fehlt.wenn zu irgendeinenm (a,b) (b,a) nicht vorhanden ist dann ist die R nicht sym.
entsprechend bei transitiv, da musst du je 2 Paare ansehen , ab und bc
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de