www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Mengenbeweis(Verknüpfung)
Mengenbeweis(Verknüpfung) < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenbeweis(Verknüpfung): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Di 25.10.2005
Autor: Brutaaaal

Hallo!

Ich habe mit folgender Aufgabe ein Problem:

Es sei f: X [mm] \to [/mm] Y eine Abbildung zwischen zwei nivht-leeren Mengen X,Y. Zeige, dass f genau dann injektiv ist, wenn es eine Abbildung h: Y [mm] \to [/mm] X gibt, so dass h [mm] \circ f=id_{x} [/mm] gilt.

Man muss hier beweisen, dass die Funktion f eine Umkehrfunktion(g) besitzen muss um durch die Verknüpfung der beiden Funktionen auf die Identität zu kommen, oder denke ich da in die falsche Richtung? Falls ich richtig denke, weiss ich allerdings immer noch nicht, wie ich das am Besten hinschreiben soll.
Wie beweise ich denn am besten, dass bzw. ob eine konkrete Funktion injektiv bzw. surjektiv ist?

Ich hoffe auf Eure Hilfe.Danke schon einmal; dies ist echt ein klasse Forum.



        
Bezug
Mengenbeweis(Verknüpfung): Umkehrfunktion
Status: (Antwort) fertig Status 
Datum: 12:03 Di 25.10.2005
Autor: Gnometech

Hallo!

Nein, in diesem Fall suchst Du keine Umkehrfunktion... eine solche gibt es nämlich nur, wenn das $f$ bijektiv ist. Das angegebene $h$ ist gewissermaßen nur eine Umkehrung in eine Richtung.

Am besten gehst Du von den Definitionen aus: eine Abbildung $f$ heißt injektiv, falls für $x, x' [mm] \in [/mm] X$ mit $f(x) = f(x')$ gilt: $x = x'$.

Kannst Du diese Eigenschaft beweisen, wenn Du die Existenz einer Abbildung $h$ annimmst, wie sie in der Aufgabe steht? Und kannst Du umgekehrt, falls die Injektivität von $f$ vorausgesetzt ist, Dir eine solche Abbildung $h$ einfach definieren? Dabei musst Du beachten, dass $f$ nicht surjektiv zu sein braucht, also gibt es nicht zu jedem $y [mm] \in [/mm] Y$ ein Urbild unter $f$!

Viel Erfolg!

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de