Mengenfolge < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Für jede Mangenfolge [mm] (A_{n}) [/mm] sei [mm] \overline{A} [/mm] := [mm] \limes sup_{n\rightarrow\infty}A_{n} [/mm] := [mm] \bigcap_{n \ge 1} \bigcup_{k \ge n} A_{k}
[/mm]
und
[mm] \underline{A} :=\limes inf_{n\rightarrow\infty}A_{n} [/mm] := [mm] \bigcup_{n \ge 1} \bigcap_{k \ge n} A_{k}
[/mm]
Beweisen Sie:
[mm] (\limes sup_{n\rightarrow\infty}A_{n})^{c} [/mm] = [mm] \limes inf_{n\rightarrow\infty}A_{n}^{c} [/mm] |
Bitte, kann mir jemand helfen??
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:54 Mo 31.03.2008 | Autor: | morpheus_R |
Bitte kann mir jemand helfen? ich bin überfragt
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:53 Mo 31.03.2008 | Autor: | pelzig |
Hi, also für mich ist der Stoff neu, klingt aber interessant...
Hab auf Wikipedia geschaut da stehen andere Defintionen:
[mm] $\overline{A}:=\lim_{n\to\infty}\sup A_n:=\bigcap_{n=1}^\infty\left(\bigcup_{m=n}^\infty A_m\right)$
[/mm]
[mm] $\underline{A}:=\lim_{n\to\infty}\inf A_n:=\bigcup_{n=1}^\infty\left(\bigcap_{m=n}^\infty A_m\right)$
[/mm]
Dazu die anschauliche Bedeutung:
Limes superior = "Elemente, die in unendlich vielen [mm] $A_n$ [/mm] liegen"
Limes inferior = "Elemente, die in fast allen (also in unendlich vielen, aber nur in endlich vielen nicht) [mm] $A_n$ [/mm] liegen"
Demnach ist also stets [mm] $\overline{A}\supseteq\underline{A}$ [/mm] (?!?)
So jetzt zu deiner Aufgabe. Ich nehme an mit [mm] $M^c$ [/mm] meinst du das Komplement der Menge $M$, aber das Komplement bezüglich welcher Obermenge? Ich sag einfach mal wenn [mm] $A_n$ [/mm] deine Mengenfolge ist, so sei [mm] $A:=\bigcup_{n=1}^\infty A_n$ [/mm] diese Obermenge.
z.z.: [mm] $X:=\left(\lim_{n\to\infty}\sup A_n\right)^c=\lim_{n\to\infty}\inf A_n^c=:Y$
[/mm]
1) zu zeigen: [mm] $X\subseteq [/mm] Y$, d.h. [mm] $x\in X\Rightarrow x\in [/mm] Y$
Sei [mm] $x\in [/mm] X$, d.h. $x$ liegt in endlich vielen [mm] $A_n$. [/mm] Wegen [mm] $x\in A_n\Leftrightarrow x\not\in A_n^c$ [/mm] liegt x demnach auch in endlich vielen [mm] $A_n^c$ [/mm] nicht, also in unendlich vielen. Also [mm] $x\in [/mm] Y$ nach (anschaulicher) Defintion.
2) zu zeigen: [mm] $X\supseteq [/mm] Y$, d.h. [mm] $x\in Y\Rightarrow x\in [/mm] X$
(Schätze das geht genauso ^^) [mm] $\Box$
[/mm]
Das könnte man sicher irgendwie noch etwas sauberer (technischer) machen, aber ich denk anschaulich is es okay.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:58 Mi 02.04.2008 | Autor: | Merle23 |
> Für jede Mangenfolge [mm](A_{n})[/mm] sei [mm]\overline{A}[/mm] := [mm]\limes sup_{n\rightarrow\infty}A_{n}[/mm]
> := [mm]\bigcap_{n \ge 1} \bigcup_{k \ge n} A_{k}[/mm]
> und
> [mm]\underline{A} :=\limes inf_{n\rightarrow\infty}A_{n}[/mm] :=
> [mm]\bigcup_{n \ge 1} \bigcap_{k \ge n} A_{k}[/mm]
>
> Beweisen Sie:
> [mm](\limes sup_{n\rightarrow\infty}A_{n})^{c}[/mm] = [mm]\limes inf_{n\rightarrow\infty}A_{n}^{c}[/mm]
>
> Bitte, kann mir jemand helfen??
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
[mm] (\limes sup_{n\rightarrow\infty}A_{n})^{c}=(\bigcap_{n \ge 1} \bigcup_{k \ge n} A_{k})^{c}=\bigcup_{n \ge 1} (\bigcup_{k \ge n} A_{k})^{c}=\bigcup_{n \ge 1} \bigcap_{k \ge n} A_{k}^{c}.
[/mm]
Kann man das einfach so machen, oder geht es nicht, weil die Vereinigungen/Durchschnitte jeweils ins Unendliche gehen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:29 Mi 02.04.2008 | Autor: | pelzig |
> [mm](\limes sup_{n\rightarrow\infty}A_{n})^{c}=(\bigcap_{n \ge 1} \bigcup_{k \ge n} A_{k})^{c}=\bigcup_{n \ge 1} (\bigcup_{k \ge n} A_{k})^{c}=\bigcup_{n \ge 1} \bigcap_{k \ge n} A_{k}^{c}.[/mm]
>
> Kann man das einfach so machen, oder geht es nicht, weil
> die Vereinigungen/Durchschnitte jeweils ins Unendliche
> gehen?
Jo geht...
1) z.z. Sei [mm] $A_k\subseteq\overline{A}$ [/mm] für alle [mm] $k\in\IN$, [/mm] dann ist [mm] $X:=\left(\bigcup_{k\in\IN}A_k\right)^c=\bigcap_{k\in\IN}A_k^c=:Y$
[/mm]
Beweis: [mm] $x\in X\Leftrightarrow x\in\overline{A}\setminus\bigcup_{k\in\IN}A_k\Leftrightarrow\forall k\in\IN:x\in\overline{A}\wedge x\not\in A_k\Leftrightarrow\forall k\in\IN:x\in A_k^c\Leftrightarrow x\in [/mm] Y [mm] \Box$
[/mm]
2) z.z. Sei [mm] $A_k\subseteq\overline{A}$ [/mm] für alle [mm] $k\in\IN$, [/mm] dann ist [mm] $X:=\left(\bigcap_{k\in\IN}A_k\right)^c=\bigcup_{k\in\IN}A_k^c=:Y$
[/mm]
Beweis: [mm] $x\in X\Leftrightarrow x\in\overline{A}\setminus\bigcap_{k\in\IN}A_k\Leftrightarrow x\in\overline{A}\wedge\exists k\in\IN:x\not\in A_k\Leftrightarrow\exists k\in\IN:x\in A_k^c\Leftrightarrow x\in\bigcup_{k\in\IN}A_k^c=Y \Box$
[/mm]
(Nein, ich glaube nicht dass das wirklich jemand liest ^^)
|
|
|
|