www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Mengenlehre
Mengenlehre < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenlehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 So 09.11.2008
Autor: trination

Aufgabe
Sind folgende Aussagen wahr oder falsch?

a) Jeder Bruch [mm] \bruch{a}{b} [/mm] ,a,b [mm] \in\IN [/mm] ist als Dezimalzahl darstellbar.
b) Jede Dezimalzahl ist als Bruch [mm] \bruch{a}{b} [/mm] ,a,b [mm] \in\IN [/mm] darstellbar.
c) [mm] \wurzel{2} [/mm] = [mm] \bruch{2048,499813}{1448,508109} [/mm]

a)  [mm] \in\IN [/mm] schließ die "0" ja nicht ein, deswegen würde ich sagen, dass es eine wahre Aussage ist.

b) Gegenbeispiel die Zahl [mm] \pi [/mm] ...lässt sich nur Näherungsweise darstellen, deswegen falsch Aussage.

c) Wenn ich den Bruch in Taschenrechner eingebe und ihn mit dem Ergebnis von [mm] \wurzel{2} [/mm] vergleiche, dann sind die Ergebnisse identisch. Ist damit die Aussage wahr?


Stimmt das so?

        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 So 09.11.2008
Autor: M.Rex


> Sind folgende Aussagen wahr oder falsch?
>  
> a) Jeder Bruch [mm]\bruch{a}{b}[/mm] ,a,b [mm]\in\IN[/mm] ist als Dezimalzahl
> darstellbar.
>  b) Jede Dezimalzahl ist als Bruch [mm]\bruch{a}{b}[/mm] ,a,b [mm]\in\IN[/mm]
> darstellbar.
>  c) [mm]\wurzel{2}[/mm] = [mm]\bruch{2048,499813}{1448,508109}[/mm]
>  a)  [mm]\in\IN[/mm] schließ die "0" ja nicht ein, deswegen würde
> ich sagen, dass es eine wahre Aussage ist.

Ist es. Mach mal die Unterscheidung "periodische Dezimalzahl" und "Nichtperiodische Dezimalzahl".

>
> b) Gegenbeispiel die Zahl [mm]\pi[/mm] ...lässt sich nur
> Näherungsweise darstellen, deswegen falsch Aussage.

Korrekt. Das kann man auch so stehen lassen.

>  
> c) Wenn ich den Bruch in Taschenrechner eingebe und ihn mit
> dem Ergebnis von [mm]\wurzel{2}[/mm] vergleiche, dann sind die
> Ergebnisse identisch. Ist damit die Aussage wahr?

nein, das ist ein "Rundungsproblem". [mm] \vurzel{2} [/mm] ist irrational, also gibt es keine Bruchdarstellung, dazu gibt es (auch hier im Forum) einige Beweise.

>  
>
> Stimmt das so?

Marius

Bezug
                
Bezug
Mengenlehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 So 09.11.2008
Autor: trination

b un c sind geklärt und einleuchtend.

wegen a)

Wie soll ich das aufschreiben.

Brüche wie: 1/2 lassen sich eindeutig widergeben in dem Fall 0,5...
Brüche wie: 3/13 lassen sich näherungsweise als Dezimalzahl angeben
Brüche wie: x/0 lassen sich gar nicht darstellen

So?

Bezug
                        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 So 09.11.2008
Autor: reverend

Vorab zu c): Dein Rechner ist einfach zu kurz. Meiner zeigt als Quadrat des angegebenen Bruches 2,0000000000874679862799136767393...

Jetzt aber zu a):
Jede rationale Zahl ist als Bruch darstellbar (das ist ja die Definition). In der Darstellung in einem beliebigen Zahlensystem gibt es dabei nur zwei mögliche Ergebnisse:
1) Die Darstellung hat eine endliche Länge, z.B. im Dezimalsystem [mm] \bruch{1}{16}=0,0625 [/mm]
2) Die Darstellung hat keine endliche Länge, ist aber ab einer bestimmten Stelle periodisch, z.B. [mm] \bruch{1}{7}=0,142857142857142857142857142857142857142857... [/mm]
Dafür kennst Du ja die Schreibweise [mm] \bruch{1}{7}=0,\overline{142857} [/mm]

Übrig bleiben dann nur noch Zahlen, die nicht endlich lang dargestellt werden können und nicht-periodisch sind. Sie können tatsächlich nicht als Bruch dargestellt werden, sind irrational und (i.a.) transzendent.

Bezug
                                
Bezug
Mengenlehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 So 09.11.2008
Autor: trination

Kann ich das nicht so beantworten:


Brüche wie: 1/2 lassen sich eindeutig widergeben in dem Fall 0,5...
Brüche wie: 3/13 lassen sich näherungsweise als Dezimalzahl angeben
Brüche wie: x/0 lassen sich gar nicht darstellen

Also quasie 2 Fälle a,b [mm] \in\IN [/mm] bzw. a,b [mm] \in\IN0 [/mm]

Bezug
                                        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 So 09.11.2008
Autor: reverend

Nein, das ist keine richtige Antwort.

Eine rationale Zahl [mm] \bruch{a}{b}, a,b\in\IN [/mm] lässt sich genau dann in endlicher Länge darstellen, wenn b nur Primteiler enthält, die auch die Basis des Zahlensystems enthält. Darum ist [mm] \bruch{1}{5^5} [/mm] z.B. so kurz: 0,00032.

Andere rationale Zahlen sind exakt als Dezimalzahl darstellbar, aber eben nicht endlich lang. Mit Einführung der Notation einer Periodik sind aber auch sie in endlicher Länge aufzuschreiben (auch wenn sie natürlich unendlich weitergehen).

[mm] \bruch{x}{0} [/mm] ist schlicht nicht definiert und daher auch keine rationale Zahl. Außerdem war [mm] \IN_0 [/mm] ja gar nicht gefragt. Um alle nicht-negativen rationalen Zahlen zu erhalten, hätte die Definition lauten müssen: [mm] a\in\IN_0, b\in\IN [/mm]

Bezug
        
Bezug
Mengenlehre: Grundsatzfrage
Status: (Antwort) fertig Status 
Datum: 17:32 So 09.11.2008
Autor: Al-Chwarizmi

Zu dieser Aufgabenstellung müsste zuerst eine wichtige
grundsätzliche Frage geklärt werden:

Was ist gemeint mit "als Dezimalzahl darstellbar" ?

sind da nur abbrechende Dezimalzahlen zugelassen ?

sind periodische Zahlen ausser jenen mit Nullperiode
auch zugelassen ?

gilt eine Zahl als "darstellbar", wenn man zwar ihre
unendlich vielen Stellen nicht wirklich ausrechnen kann,
aber dazu ein theoretisch gültiges Rezept hat ?

Al-Chwarizmi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de