www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Mengensysteme Definition
Mengensysteme Definition < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengensysteme Definition: Mengensystem, Amann
Status: (Frage) beantwortet Status 
Datum: 17:34 Do 04.10.2012
Autor: Masseltof

Hallo.

Um meine Mathekenntnisse zu verbessern habe ich mir Analysis 1 von Amann Escher ausgeliehen.
Ein Mengensystem wird hier folgendermaßen definiert:

Es sei [mm] \mathbf{A} [/mm] eine nichtleere Menge und für jedes [mm] \alpha \in \mathbf{A} [/mm] sei [mm] A_{\alpha} [/mm] eine Menge.
Dann heißt [mm] (A_{\alpha}; \alpha \in \mathbf{A}) [/mm] Familie von Mengen (oder Mengensystem), und A ist eine Indexmenge für diese Familie.

1.Frage:
Man wählt aus einer Indexmenge bspw. [mm] \mathebf{A}:={1,2,3} [/mm] ein Element und definiert hierfür eine neue Menge [mm] A_{\alpha} [/mm] also [mm] A_{1},A_{2},A_{3}. [/mm]
Man bezeichnet [mm] \{A_{1},A_{2},A_{3}\} [/mm] als Familie.
Besitzen die Elemente der Familie automatisch ein Element? [mm] A_{1}:={1}, A_{2}=2 [/mm] usw.?


Für den Durchschnitt wird nun folgende Voraussetzung und anschließende Definition gegeben:
Es sei X eine Menge und [mm] \mathcal{A} [/mm] := [mm] \{A_{\alpha} ; a \in \mathebf{A}\} [/mm] sei eine Familie von Teilmengen von X.

Durchschnitt:


[mm] \bigcap_{\alpha}A_{\alpha} [/mm] := [mm] \{x \in X ; \allquant \alpha \in \mathebf{A}: x \in A_{\alpha}\} [/mm]

Die obige Definition verstehe ich wie folgt:
Der Durchschnitt ist definiert als Menge aller x aus X, sodass für alle [mm] \alpha [/mm] aus A gilt, dass jedes x in [mm] A_{\alpha} [/mm] enthalten ist.
Also jedes x der Menge des  Durchschnitts ist in jedem [mm] A_{\alpha} [/mm] mit [mm] \alpha \in \mathebf{A} [/mm] enthalten.

Habe ich es so richtig aufgefasst?

Grüße

        
Bezug
Mengensysteme Definition: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Do 04.10.2012
Autor: luis52

Moin,

> Hallo.
>  
> Um meine Mathekenntnisse zu verbessern habe ich mir
> Analysis 1 von Amann Escher ausgeliehen.
>  Ein Mengensystem wird hier folgendermaßen definiert:
>  
> Es sei [mm]\mathbf{A}[/mm] eine nichtleere Menge und für jedes
> [mm]\alpha \in \mathbf{A}[/mm] sei [mm]A_{\alpha}[/mm] eine Menge.
>  Dann heißt [mm](A_{\alpha}; \alpha \in \mathbf{A})[/mm] Familie
> von Mengen (oder Mengensystem), und A ist eine Indexmenge
> für diese Familie.
>  
> 1.Frage:
>  Man wählt aus einer Indexmenge bspw. [mm]\mathebf{A}:={1,2,3}[/mm]
> ein Element und definiert hierfür eine neue Menge
> [mm]A_{\alpha}[/mm] also [mm]A_{1},A_{2},A_{3}.[/mm]
>  Man bezeichnet [mm]\{A_{1},A_{2},A_{3}\}[/mm] als Familie.
> Besitzen die Elemente der Familie automatisch ein Element?
> [mm]A_{1}:={1}, A_{2}=2[/mm] usw.?

Nicht nowendigerweise, es kann auch gelten [mm] $A_1=\emptyset$. [/mm]


>  
>
> Für den Durchschnitt wird nun folgende Voraussetzung und
> anschließende Definition gegeben:
>  Es sei X eine Menge und [mm]\mathcal{A}[/mm] := [mm]\{A_{\alpha} ; a \in \mathebf{A}\}[/mm]
> sei eine Familie von Teilmengen von X.
>
> Durchschnitt:
>  
>
> [mm]\bigcap_{\alpha}A_{\alpha}[/mm] := [mm]\{x \in X ; \allquant \alpha \in \mathebf{A}: x \in A_{\alpha}\}[/mm]
>  
> Die obige Definition verstehe ich wie folgt:
>  Der Durchschnitt ist definiert als Menge aller x aus X,
> sodass für alle [mm]\alpha[/mm] aus A gilt, dass jedes x in
> [mm]A_{\alpha}[/mm] enthalten ist.

Besser: Der Durchschnitt ist definiert als Menge aller [mm] $x\in [/mm] X$,
sodass für alle [mm]\alpha[/mm] aus [mm] \mathbf{A} [/mm] gilt, dass  jedes  $x_$ Element von [mm]A_{\alpha}[/mm] ist.

> Also jedes x der Menge des  Durchschnitts ist in jedem
> [mm]A_{\alpha}[/mm] mit [mm]\alpha \in \mathebf{A}[/mm] enthalten.

[ok]  


vg Luis

Bezug
                
Bezug
Mengensysteme Definition: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:11 Do 04.10.2012
Autor: Masseltof

Danke vielmals :)

Schönen Abend noch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de