www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Messbarkeit
Messbarkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Messbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Fr 20.11.2009
Autor: Irmchen

Hallo alle zusammen!

Ich habe hier etwas wahrschienlich ziemlich einfaches, aber ich stehe auf dem Schlauch :-(... Es geht um den Beweis eines kurzen Lemmas.


Lemma :

Sei [mm] \mathcal E_2 [/mm] ein Erzeuger von [mm] \mathcal A_2 [/mm], d.h.
[mm] \sigma( \mathcal E_2) = \mathcal A_2 [/mm]. Dann ist X genau dann messbar, wenn gilt:

[mm] X^{-1} (A) \in \mathcal A_1 [/mm] für alle [mm] A \in \mathcal E_2 [/mm]

Beweis :

Man über legt sich , dass das Mengensystem

[mm] \mathcal F := \{ A \in \mathcal P ( \Omega_2) \ | \ X^{-1} (A) \in \mathcal A_1 \} [/mm]
eine [mm] \sigma [/mm] - Algebra auf [mm] \Omega_2 [/mm] bildet.

[ [mm] X^{-1} ( \Omega_2 ) = \Omega_1 \ , \ X^{-1} ( \emptyset ) = \emptyset \ , \ X^{-1} ( A \backslash B ) = X^{-1} ( A ) \backslash X^{-1} ( B ) \ , \ X^{-1} ( \bigcup_{n=1}^{ \infty } A_n) = \bigcup_{n=1}^{\infty} X^{-1} (A_n) [/mm]  ]

Nach Voraussetzung gilt [mm] \mathcal E_2 \subset \mathcal F [/mm].

Daher gilt:

[mm] \mathcal A_2 = \sigma ( \mathcal E_2 ) \subset \sigma ( \mathcal F ) = \mathcal F [/mm]


Ich sehe nicht, dass wir die zwei Richtungen bewiesen haben.. Und warum muss das Mengensystem eine [mm] \sigma [/mm] - Algebra bilden?

Ich denke, dass die Antwort bstimmt offensichtlich ist, aber ich hab im Moment irgendwie nicht den Durchblick :-( ..

Vielen Dank!
Viele Grüße
Irmchen




        
Bezug
Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Fr 20.11.2009
Autor: Gonozal_IX

Hallo Irmchen,

Du hast recht, ihr habt wirklich nur eine Richtung der "genau, dann wenn" Aussage bewiesen, nämlich die Rückrichtung.

Das reicht auch, da die Hinrichtung trivial ist :-) Warum wirst du nun fragen, dann wollen wir mal.

Schreibe dir mal genau auf, wie ihr meßbar definiert habt. Hast du? Gut, dann zur Hinrichtung:

Vor: X meßbar, z.z [mm] $X^{-1}(A)\in A_1$ [/mm] für alle [mm] $A\in\mathcal{E}_2\subset \mathcal{A}_2$ [/mm]

Nun klar, warum das trivial ist? :-)
Wenn etwas für alle [mm] $A\in \mathcal{A}_2$ [/mm] gilt, dann doch erst recht für alle $A [mm] \in \mathcal{E}_2$, [/mm] wenn [mm] $\mathcal{E}_2\subset\mathcal{A}_2$ [/mm]

Für die Rückrichtung:
Warum das eine [mm] \sigma-Algebra [/mm] ist, steht doch direkt darunter. Die "Beweiseigenschaften" hast du ja selbst hingeschrieben, indem du die Eigenschaften von X nutzen kannst.

Beweis es doch einfach formal fix, dann siehst du es.

Ist dir denn klar, was der Beweis aussagt? Letztlich zeigt er nur, dass es ausreicht, die Meßbarkeit für den Erzeuger der [mm] \sigma-Algebra [/mm] zu zeigen, anstatt für die [mm] \sigma-Algebra [/mm] selbst. Warum liegt in den Eigenschaften von Abbildungen begründet (denselben, die du brauchst um zu zeigen, dass [mm] \mathcal{F} [/mm] eine [mm] \sigma-Algebra [/mm] ist).

mFG,
Gono.


Bezug
                
Bezug
Messbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:39 Fr 20.11.2009
Autor: Irmchen

Hei Gono !

Vielen lieben Dank! Alle unklaren Gedanken sind jetzt endlich fott .. :-)
( Zumindest was diese Frage anging ;-) ... )

Viele Grüße
Irmchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de