www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Methode der kleinsten Quadrate
Methode der kleinsten Quadrate < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Methode der kleinsten Quadrate: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Mi 25.04.2007
Autor: nisper

Ich brauche Rat:

Wie kann ich aus einer Menge von Punkten, die annähernd auf einer Ebene liegen, eine Ebenengleichung errechnen?

Ich weiß dass die gesuchte Ebene diejenige ist, zu welcher die Abstandsquadrate der Punkte minimal sind. Für ein ähnliches Problem mit Geraden in der Ebene wüsste ich auch was ich rechnen muss. Aber durch die zusätzlichen Parameter bei Ebenen wird das alles ziemlich kompliziert. Ich habe zwar auf Wikipidia und auch an anderen Stellen Infos gefunden wie man diese Ausgleichsrechnungen durchführt, aber konkrete Lösungen nur für Geraden und ansonsten ganz allgemeine Lösungsansätze (für n Parameter). Ich habe dann angefangen die allgemeinen Ansätze auf Ebenengleichungen anzuwenden, aber irgendwie habe ich das Gefühl das Rad neu zu erfinden. Eigentlich müsste das doch eine Standardanwendung der Ausgleichsrechnung sein, oder?

Um den Fall noch etwas konkreter zu machen:
Ich muss ein Programm schreiben, das aus 12 gegebenen Punkten eine Ebenengleichung ermittelt (also die Parameter der Koordinatenform).

Kann mir jemand einen konkreten Lösungsansatz für die Bestimmung einer Ebenengleichung mit der Methode der kleinsten Quadrate nennen, der auch programmtechnisch umgesetzt werden kann?

Hier der Wikipedia-Link zur relevanten Stelle:
http://de.wikipedia.org/wiki/Methode_der_kleinsten_Quadrate#Der_allgemeine_lineare_Fall
Ich kann dem Ganzen gut folgen, aber an der Stelle "Lösung des Minimierungsproblems" ist Schluss. Von Matrizen habe ich nicht viel Ahnung und wenn dann von "Regularität", "Kondition" usw. die Rede ist, verstehe ich kein Wort mehr.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Methode der kleinsten Quadrate: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Mi 25.04.2007
Autor: komduck

Vieleicht hilft dir dies weiter:

[mm] http://www.gfai.de/~goetze/links/Approxim_2_4.pdf [/mm]

komduck

Bezug
                
Bezug
Methode der kleinsten Quadrate: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:58 Do 26.04.2007
Autor: nisper

Genau so was habe ich gesucht. Besten Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de