www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Metrik
Metrik < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Sa 21.06.2014
Autor: LinaWeber

Aufgabe
Sei (M,d) ein metrischer Raum und K [mm] \subset [/mm] M sei folgenkompakt. Zeigen sie:
1) Das der metrische Raum (K, [mm] d_{|K}) [/mm] vollständig ist
2)Ist f:K -> [mm] \IR [/mm] stetig, so gibt es ein a [mm] \in \IK, [/mm] sodass [mm] f(a)=sup_{x \in K}|f(x)| [/mm]
3)Man zeige das f gleichmäßig stetig ist
4)Sei m [mm] \in [/mm] M und f:M-> [mm] \IR [/mm] definiert durch f(x):=d(x,m). Zeigen sie, dass f stetig ist

Hallo,
ich habe leider große Probleme mit dem Thema der Metrik und hoffe daher, dass ihr mir helfen könnt.
zu 1) Ich weiß ja das K [mm] \subset [/mm] M folgenkompakt ist, also weiß ich auch, dass jede Folge in K eine konvergente Teilfolge besitzt, deren Grenzwert widerum in der Menge liegt.Außerdem weiß ich, dass K beschränkt und abgeschlossen ist( was hier im Bezug zu der Aufgabe wahrscheinlich nicht so wichtig ist)

Naja, jetzt soll ich also beweisen, dass K vollständig ist. Das bedeutet, dass ich beweisen muss, dass jede Cauchy Folge in K auch einen Grenzwert in K besitzt.

eine Cauchy Folge konvergiert dann, wenn sie eine konvergente Teilfolge besitzt. Wegen der Folgenkompaktheit existiert eine in K konvergente Teilfolge.


zu 2) aus der Folgenkompaktheit folgt ja, dass k beschränkt und abgeschlossen ist. Ich weiß ja, dass jede beschränkte Funktion ihr Supremum bzw. Infimum annimmt. Kann ich also aus der Beschränktheit schlussfolgern, dass [mm] f(a)=sup_{x \in K}|f(x)| [/mm] existiert?

zu 3) hier weiß ich leider gar nicht wo ich ansetzten soll und würde mich über Hilfe freuen. Ich weiß gar nicht wie ich gleichmäßige Stetigkeit mit dem Begriff der Matrik verbinde...

zu 4) auch hier verstehe ich nicht wie ich dies zeigen soll und wäre sehr sehr dankbar über Hilfe!

LG


zu 2)

        
Bezug
Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 08:14 Mo 23.06.2014
Autor: hippias


> Sei (M,d) ein metrischer Raum und K [mm]\subset[/mm] M sei
> folgenkompakt. Zeigen sie:
>  1) Das der metrische Raum (K, [mm]d_{|K})[/mm] vollständig ist
>  2)Ist f:K -> [mm]\IR[/mm] stetig, so gibt es ein a [mm]\in \IK,[/mm] sodass

> [mm]f(a)=sup_{x \in K}|f(x)|[/mm]

Der Betrag gehoert hier wohl nicht hin.

>  3)Man zeige das f gleichmäßig
> stetig ist
>  4)Sei m [mm]\in[/mm] M und f:M-> [mm]\IR[/mm] definiert durch f(x):=d(x,m).

> Zeigen sie, dass f stetig ist
>  Hallo,
>  ich habe leider große Probleme mit dem Thema der Metrik
> und hoffe daher, dass ihr mir helfen könnt.
> zu 1) Ich weiß ja das K [mm]\subset[/mm] M folgenkompakt ist, also
> weiß ich auch, dass jede Folge in K eine konvergente
> Teilfolge besitzt, deren Grenzwert widerum in der Menge
> liegt.Außerdem weiß ich, dass K beschränkt und
> abgeschlossen ist( was hier im Bezug zu der Aufgabe
> wahrscheinlich nicht so wichtig ist)
>  
> Naja, jetzt soll ich also beweisen, dass K vollständig
> ist. Das bedeutet, dass ich beweisen muss, dass jede Cauchy
> Folge in K auch einen Grenzwert in K besitzt.
>  
> eine Cauchy Folge konvergiert dann, wenn sie eine
> konvergente Teilfolge besitzt. Wegen der Folgenkompaktheit
> existiert eine in K konvergente Teilfolge.

Gut: du bist so gut wie fertig.

>  
>
> zu 2) aus der Folgenkompaktheit folgt ja, dass k
> beschränkt und abgeschlossen ist. Ich weiß ja, dass jede
> beschränkte Funktion ihr Supremum bzw. Infimum annimmt.

Das ist aber i.a. nicht richtig: aber es ist richtig fuer stetige Funktionen auf kompakten Mengen.

> Kann ich also aus der Beschränktheit schlussfolgern, dass
> [mm]f(a)=sup_{x \in K}|f(x)|[/mm] existiert?

Offenbar nicht. Versuche es so: sei etwa $M:= [mm] \sup_{x\in K} [/mm] f(x)$. Dann existiert eine Folge [mm] $(y_{n})$ [/mm] vom Elementen aus $Bild f$, sodass [mm] $\lim y_{n}= [/mm] M$. Wie sieht das jetzt in $K$ aus? Nutze die Folgenkompaktheit und Stetigkeit aus.

>  
> zu 3) hier weiß ich leider gar nicht wo ich ansetzten soll
> und würde mich über Hilfe freuen. Ich weiß gar nicht wie
> ich gleichmäßige Stetigkeit mit dem Begriff der Matrik
> verbinde...

Das steht in deiner Vorlesung und jedem Analysisbuch.

>  
> zu 4) auch hier verstehe ich nicht wie ich dies zeigen soll
> und wäre sehr sehr dankbar über Hilfe!

Sei [mm] $\varepsilon>0$. [/mm] Wie koennte [mm] $\delta$ [/mm] gewaehlt werden, sodass [mm] $|f(x)-f(y)|<\varepsilon$ [/mm] aus [mm] $|x-y|<\delta$ [/mm] folgt?

>  
> LG
>  
>
> zu 2)


Bezug
        
Bezug
Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 08:25 Mo 23.06.2014
Autor: fred97


> Sei (M,d) ein metrischer Raum und K [mm]\subset[/mm] M sei
> folgenkompakt. Zeigen sie:
>  1) Das der metrische Raum (K, [mm]d_{|K})[/mm] vollständig ist
>  2)Ist f:K -> [mm]\IR[/mm] stetig, so gibt es ein a [mm]\in \IK,[/mm] sodass

> [mm]f(a)=sup_{x \in K}|f(x)|[/mm]
>  3)Man zeige das f gleichmäßig
> stetig ist
>  4)Sei m [mm]\in[/mm] M und f:M-> [mm]\IR[/mm] definiert durch f(x):=d(x,m).

> Zeigen sie, dass f stetig ist
>  Hallo,
>  ich habe leider große Probleme mit dem Thema der Metrik
> und hoffe daher, dass ihr mir helfen könnt.
> zu 1) Ich weiß ja das K [mm]\subset[/mm] M folgenkompakt ist, also
> weiß ich auch, dass jede Folge in K eine konvergente
> Teilfolge besitzt, deren Grenzwert widerum in der Menge
> liegt.Außerdem weiß ich, dass K beschränkt und
> abgeschlossen ist( was hier im Bezug zu der Aufgabe
> wahrscheinlich nicht so wichtig ist)
>  
> Naja, jetzt soll ich also beweisen, dass K vollständig
> ist. Das bedeutet, dass ich beweisen muss, dass jede Cauchy
> Folge in K auch einen Grenzwert in K besitzt.
>  
> eine Cauchy Folge konvergiert dann, wenn sie eine
> konvergente Teilfolge besitzt.






> Wegen der Folgenkompaktheit
> existiert eine in K konvergente Teilfolge.
>  
>
> zu 2) aus der Folgenkompaktheit folgt ja, dass k
> beschränkt und abgeschlossen ist. Ich weiß ja, dass jede
> beschränkte Funktion ihr Supremum bzw. Infimum annimmt.
> Kann ich also aus der Beschränktheit schlussfolgern, dass
> [mm]f(a)=sup_{x \in K}|f(x)|[/mm] existiert?
>  
> zu 3) hier weiß ich leider gar nicht wo ich ansetzten soll
> und würde mich über Hilfe freuen. Ich weiß gar nicht wie
> ich gleichmäßige Stetigkeit mit dem Begriff der Matrik
> verbinde...
>  
> zu 4) auch hier verstehe ich nicht wie ich dies zeigen soll
> und wäre sehr sehr dankbar über Hilfe!

Vierecksungleichung:


$|d(x,y)-d(u,v)| [mm] \le [/mm] d(x,u)+d(y,v)$

FRED

>  
> LG
>  
>
> zu 2)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de