www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Metrik
Metrik < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 Mi 11.03.2009
Autor: ueberforderter_Ersti

Aufgabe
Sei d eine Metrik auf X (top. Raum).
Beweise, dass [mm] d'(x,y)=\bruch{d(x,y)}{1+d(x,y)} [/mm] eine Metrik auf X ist.

Hi zusammen!
Ich habe die Aufgabe oben zu lösen und soweit ist mir auch alles klar (spich was ich zu zeigen habe :)) Aber bei der Deiecksungleichung haperts noch etwas. Ich komme einfach nicht drauf, wie ich den Nenner "passend" kriege. Also
[mm] d'(x,z)=\bruch{d(x,z)}{1+d(x,z)} \le \bruch{d(x,y)+d(y,z)}{1+d(x,z)}=\bruch{d(x,y)}{1+d(x,z)}+\bruch{d(y,z)}{1+d(x,z)} [/mm]
Nun stecke ich fest. Hat jemand einen kleinen Tipp?
Vielen lieben Dank Ersti

        
Bezug
Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Mi 11.03.2009
Autor: leduart

Hallo
1. solltest du die Beh. die du beweisen willst erstmal hinschreiben, damit du dein Ziel siehst.
2. sollte dir klar sein, dass man die Ungleichung fuer d selbst benutzen muss.
Gruss leduart

Bezug
                
Bezug
Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Mi 11.03.2009
Autor: ueberforderter_Ersti

Danke für die schnelle Antwort!
Also, z.z. d'(x,z) [mm] \le [/mm] d'(x,y)+d'(y,z)
mit der Definition von d'
[mm] \bruch{d(x,z)}{1+d(x,z)} \le \bruch{d(x,y)}{1+d(x,y)}+\bruch{d(y,z)}{1+d(y,z)} [/mm] nicht?
Nun mit meiner obigen Umformung bin ich ja bei
[mm] \bruch{d(x,z)}{1+d(x,z)} \le \bruch{d(x,y)}{1+d(x,z)}+\bruch{d(y,z)}{1+d(x,z)} [/mm]
Meine Überlegung war nun die Nenner abzuschätzen. Aber mit der Dreiecksungleichung für d komme ich da nicht weiter, oder?
Deinen 2.Tipp versteh ich leider nicht ganz.. Es ist mir schon klar, dass ich mit damit argumentieren soll, dass d eine Metrik ist und dafür die Dreiecksungleichung gilt, aber eben das hilft mir da nicht wirklich weiter.. Oder ich sehs nicht.
Vielen Dank für deine Mühe! Ersti

Bezug
                        
Bezug
Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Mi 11.03.2009
Autor: luis52

Moinm

>  Also, z.z. d'(x,z) [mm]\le[/mm] d'(x,y)+d'(y,z)
>  mit der Definition von d'
>  [mm]\bruch{d(x,z)}{1+d(x,z)} \le \bruch{d(x,y)}{1+d(x,y)}+\bruch{d(y,z)}{1+d(y,z)}[/mm]
> nicht?

Ja.

Um einen Notationsoverkill zu vermeiden schreibe mal

$a=d(x,z)$, $b=d(x,y)$ $c=d(y,z)$. Die Ungleichung lautet dann:

$ [mm] \bruch{a}{1+a} \le \bruch{b}{1+b}+\bruch{c}{1+c}$. [/mm]

Bring das mal auf einen gemeinsamen Nenner und vereinfache. Ich meine, dann sieht man etwas...

vg Luis


Bezug
                                
Bezug
Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Mi 11.03.2009
Autor: ueberforderter_Ersti

DANKE!
Hat funktioniert =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de