www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Metrik
Metrik < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Di 15.11.2011
Autor: Igor1

Hallo,

ich soll eine Metrik auf [mm] C[0,1]x\IR^{2} [/mm] finden.
(C[0,1] ist der Raum der stetigen Funktionen von [0,1] nach [mm] \IR) [/mm]

Man kann hier die triviale Metrik nehmen. Gibt es hier eine Metrik, die "mehr Sinn"
als die triviale Metrik hat.

Das Kartesische Produkt von der Menge , liefert die Menge aller geordneten Paare in der Form
[mm] ((f_{1},v_{1}),(f_{2}v_{2}) [/mm] )  mit [mm] f_{1},f_{2} \in [/mm] C[0,1] , [mm] v_{1},v_{2}\in \IR^{2}. [/mm]

Was könnte eine stetige Funktion mit einem Vektor in [mm] \IR^{2} [/mm] zu tun haben? Vielleicht sollte irgendwie Abstand zwischen einer Koordinate des Vektors und einem Wert der Funktion an einer Stelle bestimmt werden?
(z.B kleinster oder  größter Abstand). Aber es gibt zwei Funktionen und zwei Vektoren. Wenn ich für ein geordnetes Paar größten Abstand bestimme und dasselbe mit dem zweiten geordneten Paar , was soll man dann mit den beiden Abständen machen ?Z.B den größten von den beiden Abständen mit Hilfe der Maximums-Norm nehmen?



Gruss
Igor


        
Bezug
Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Di 15.11.2011
Autor: kamaleonti

Moin Igor,
> ich soll eine Metrik auf [mm]C[0,1]\times\IR^{2}[/mm] finden.
> (C[0,1] ist der Raum der stetigen Funktionen von [0,1] nach [mm] \IR) [/mm]

Sei [mm] d_1 [/mm] eine Metrik auf C([0,1]) und [mm] d_2 [/mm] eine Metrik auf [mm] \IR^2. [/mm]
Dann ist auf [mm] C([0,1])\times\IR^2 [/mm] eine Metrik e definiert durch

       [mm] e((f_1,v_1), (f_2,v_2))=d_1(f_1,f_2)+d_2(v_1,v_2). [/mm]


> Das Kartesische Produkt von der Menge , liefert die Menge
> aller geordneten Paare in der Form
>  [mm]((f_{1},v_{1}),(f_{2}v_{2})[/mm] )  mit [mm]f_{1},f_{2} \in[/mm] C[0,1], [mm]v_{1},v_{2}\in \IR^{2}.[/mm]

Seit wann denn das? Es ist [mm] A\times B=\{(a,b): a\in A, b\in B\}. [/mm]

LG

Bezug
                
Bezug
Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Di 15.11.2011
Autor: Igor1

Early moin Kamaleonti,

die Metrik, die Du angegeben hast, habe ich für (XxY)x(XxY) (also im abstrakten Sinne,d.h  für allgemeine metrische Räume)  auf meinem Übungsblatt  als Teilaufgabe gesehen(man sollte zeigen, dass e eine Metrik ist). Jedoch , mir schien diese Definition/Konstruktion
nicht so sinnvoll: warum möchte man denn einen Abstand von zwei Funktionen berechnen und dann dazu den Abstand zwei Vektoren dazu addieren? Wird diese Definition irgendwo wichtig in Anwendung?

Wenn Du diese Definition angegeben hast und diese auch auf dem Übungsblatt steht, ist schon wahrschinlicher , dass diese Metrik wichtig ist, aber warum?


P.S: Mit dem kartesischen Produkt "von der Menge" wollte ich eigentlich [mm] (C[0,1]x\IR^{2})x(C[0,1] x\IR^{2}) [/mm] meinen . Sorry, ich habe mich da unverständlich ausgedruckt.


Gruss
Igor

Bezug
                        
Bezug
Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 Mi 16.11.2011
Autor: kamaleonti

Hallo,
> Wenn Du diese Definition angegeben hast und diese auch auf
> dem Übungsblatt steht, ist schon wahrschinlicher , dass
> diese Metrik wichtig ist, aber warum?

Man kann sich allgemein n metrische Räume [mm] (X_i, d_i), 1\leq i\leq [/mm] n nehmen und die sogenannte Produktmetrik e auf dem Produktraum [mm] X_1\times X_2\times\ldots\times X_n [/mm] definieren durch

      [mm] e((\xi_1,\ldots,\xi_n)(\mu_1\ldots,\mu_n))=\sum_{i=1}^n d_i(\xi_i,\mu_i). [/mm]

Sie beschreibt ein sehr allgemeines Konzept, unterschiedlich strukturierte Räume mit einer Metrik zu versehen. Dein konkretes Beispiel soll eher zur Verdeutlichung dienen.

Als Anwendung von Produktmetriken fällt mir spontan die Klassifizierung von Objekten ein: Das passiert zum Beispiel in der Mustererkennung und der Bildinformatik. Dort hat man einen Merkmalsraum, also gewisse Daten vorliegen. Aus einer Stichprobe (etwa ein "zufälliges" Bild, dem man eine Bedeutung zuordnen will) kann man Daten wie Formen, Farben etc. extrahieren und dann mit gewissen bekannten Mustern vergleichen. Dazu braucht man eine geeignete Metrik. Diese kann je nach Problemstellung ganz unterschiedlich aussehen. Wenn man zwei Objekte mit den unterschiedlichen Eigenschaften vergleichen will, kommen eben auch durchaus mal Produktmetriken zum Einsatz.

Allgemein: Vergleich von eher komplexen Strukturen.


LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de