www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Metrik
Metrik < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 So 22.04.2012
Autor: Philphil

Aufgabe
Seien [mm] d_p [/mm] für 1 [mm] \le [/mm] p [mm] \le \infty [/mm] die üblichen Metriken auf [mm] \IR^2 [/mm] und d die diskrete Metrik auf [mm] \IR^2. [/mm] Skizzieren sie die Kugel [mm] B_1(0,1) [/mm] bezüglich der Metriken [mm] d_1,d_2,d_\infty [/mm] und d. Geben sie [mm] B_2(3,0) [/mm] bezüglich der Metrik d an.

hi,

ich komm mal wieder nicht so recht weiter. Zu allererst habe ich mir natürlich die Definitionen rausgesucht wobei ich da auch schon etwas schwierigkeiten hatte, was ich mit dem [mm] B_1(0,1) [/mm] anfangen soll. Jedenfalls map für p=1 ist die definition [mm] \summe_{j=1}^{2} |x_j [/mm] - [mm] y_j| [/mm] .

Für dieses [mm] B_1(0,1) [/mm] habe ich eine formel gefunden: B(a,r) = {x [mm] \in [/mm] E : d(x,a) [mm] \le [/mm] r} wobei es da darauf ankommt ob die kugel offen oder geschlossen ist?! Bin mir nichtmal sicher ob das die richtige Formel ist, da wir ja im [mm] \IR^2 [/mm] sind  brauchen wir ja 2 Koordinaten, aber wenn man davon ausgeht dass das die Koordinaten in der Klammer sind hätt ich den punkt (0,1) und wozu dann den abstand bestimmen?!

Wie ihr seht komme ich einfach nicht mit der Aufgabenstellung zurecht bzw. mit der Definitionsfindung.

Danke schonmal für eure Hilfe

Phil Braun

        
Bezug
Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 So 22.04.2012
Autor: fred97

Ist d eine Metrik auf dem [mm] \IR^2, [/mm] so ist für [mm] (x_0,y_0) \in \IR^2 [/mm] und r>0


  [mm] B_r(x_0,y_0):= \{(x,y) \in \IR^2: d((x,y),(x_0,y_0))
FRED

Bezug
                
Bezug
Metrik: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:42 So 22.04.2012
Autor: Philphil

Ok, gehen wir von der Formel aus, dann wäre r=1, [mm] x_0 [/mm] = 0 und [mm] y_0 [/mm] = 1.

Der Abstand [mm] d_1 [/mm] = [mm] \summe_{i=1}^{2} |x_i [/mm] - [mm] y_i| [/mm] = |0-1|+|x-y| < 1

Dann folgt daraus, dass alle punkte die auf der gerade zwischen (1,1) und (-1,-1) liegen die Formel erfüllen.

Ist das korrekt?!

Demnach würde aber für [mm] d_2 [/mm] genau das gleiche rauskommen, denn [mm] \wurzel{|0-1|^2 + |x-y|^2} [/mm] = [mm] \wurzel{1 + |x-y|^2} [/mm] < 1 daraus folgt, dass [mm] |x-y|^2 [/mm] = 0 sein muss, oder?!


Gruß Phil

Bezug
                        
Bezug
Metrik: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 24.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de