www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Metrik/Topologie
Metrik/Topologie < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrik/Topologie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 So 10.02.2013
Autor: sissile

Aufgabe
Diskrete Metrik:
d(x,y)= [mm] \begin{cases} 0, & \mbox{für } x=y \\ 1, & \mbox{für } x \not= y \end{cases} [/mm]

Diskrete Topologie:
[mm] \tau= 2^x [/mm] Potenzmenge von x

Nun hab ich mich gefragt ob die diskrete Metrik die diskrete Topologie induziert.
Da wir gelernt haben dass eine Metrik immer eine Topologie induziert in den man als Basis die offenen [mm] $\epsilon$-Bälle [/mm] festsetzt.

Dass meine Behauptung stimmt denke ich schon;)
Aber wie man das beweist , weiß ich nicht, würd ich aber gerne mit eurer Hilfe in Erfahrung bringen.

LG

        
Bezug
Metrik/Topologie: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 So 10.02.2013
Autor: steppenhahn

Hallo,


> Diskrete Metrik:
>  d(x,y)= [mm]\begin{cases} 0, & \mbox{für } x=y \\ 1, & \mbox{für } x \not= y \end{cases}[/mm]
>  
> Diskrete Topologie:
>  [mm]\tau= 2^x[/mm] Potenzmenge von x



> Nun hab ich mich gefragt ob die diskrete Metrik die
> diskrete Topologie induziert.
>  Da wir gelernt haben dass eine Metrik immer eine Topologie
> induziert in den man als Basis die offenen [mm]\epsilon[/mm]-Bälle
> festsetzt.
>  Dass meine Behauptung stimmt denke ich schon;)


[ok]


>  Aber wie man das beweist , weiß ich nicht, würd ich aber
> gerne mit eurer Hilfe in Erfahrung bringen.


Dann wäre der erste Schritt, dass du dir anschaust, wie die [mm] $\varepsilon$-Bälle [/mm] aussehen. Was ist denn z.B. für $1 [mm] \ge \varepsilon [/mm] > 0$:

[mm] $B_{\varepsilon}(x) [/mm] = [mm] \{y \in X: d(x,y) < \varepsilon\}$ [/mm]

Und was ist für [mm] $\varepsilon [/mm] > 1$:

[mm] $B_{\varepsilon}(x) [/mm] = [mm] \{y \in X: d(x,y) < \varepsilon\}$ [/mm]

?


Wie entsteht jetzt die Topologie aus der Basis, die aus allen Bällen besteht?

"Eine Menge ist offen in $Y$ genau dann, wenn sie sich als Vereinigung von Elementen der Basis darstellen lässt."



Viele Grüße,
Stefan

Bezug
                
Bezug
Metrik/Topologie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Di 19.02.2013
Autor: sissile

Hallo
Danke für die Antwort.
Frage:Wieso wird [mm] B_\epsilon(x) [/mm] in X und nicht in P(X) betrachtet?

> Dann wäre der erste Schritt, dass du dir anschaust, wie
> die [mm]\varepsilon[/mm]-Bälle aussehen. Was ist denn z.B. für [mm]1 \ge \varepsilon > 0[/mm]:
>  
> [mm]B_{\varepsilon}(x) = \{y \in X: d(x,y) < \varepsilon\}[/mm]

d(x,y) < 1
dies gilt nur für x=y
Also ist [mm] B_{\varepsilon}(x) [/mm]  = [mm] \{x\} [/mm]

> Und was ist für [mm]\varepsilon > 1[/mm]:
>  
> [mm]B_{\varepsilon}(x) = \{y \in X: d(x,y) < \varepsilon\}[/mm]
>  

Dann kann eben x=y oder x [mm] \not= [/mm] y gelten
?

> Wie entsteht jetzt die Topologie aus der Basis, die aus
> allen Bällen besteht?

Ich weiß schon, dass die Metrik eine Topologie induziert, ich musst zeigen, dass diese Topologie diskret ist.
Sei [mm] \tau [/mm] die Topologie
ZZ.: [mm] \tau [/mm] = P(X)
Nach obiger überlegung gilt sicher: [mm] \{\{x\} | x \in X \} \subseteq \tau. [/mm]
[mm] \tau [/mm] ist abgeschlossen unter beliebigen Vereinigungen [mm] =>\bigcup_{x\in I} \{x\} \in \tau, [/mm] (I .. Index)
=> [mm] \tau [/mm] = [mm] 2^X [/mm] sein

Liebe grüße



Bezug
                        
Bezug
Metrik/Topologie: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Di 19.02.2013
Autor: steppenhahn

Hallo,


> Hallo
>  Danke für die Antwort.
>  Frage:Wieso wird [mm]B_\epsilon(x)[/mm] in X und nicht in P(X)
> betrachtet?


Weil hier $(X,d)$ der metrische Raum ist, und es um die Kugel im metrischen Raum geht.
P(X) hat doch zunächst gar keine Topologie.


> > Dann wäre der erste Schritt, dass du dir anschaust, wie
> > die [mm]\varepsilon[/mm]-Bälle aussehen. Was ist denn z.B. für [mm]1 \ge \varepsilon > 0[/mm]:
>  
> >  

> > [mm]B_{\varepsilon}(x) = \{y \in X: d(x,y) < \varepsilon\}[/mm]
>  
> d(x,y) < 1
>  dies gilt nur für x=y
>  Also ist [mm]B_{\varepsilon}(x)[/mm]  = [mm]\{x\}[/mm]

[ok]


>  > Und was ist für [mm]\varepsilon > 1[/mm]:

>  >  
> > [mm]B_{\varepsilon}(x) = \{y \in X: d(x,y) < \varepsilon\}[/mm]
>  >

>  
> Dann kann eben x=y oder x [mm]\not=[/mm] y gelten
>   ?


Genau, also [mm] $B_{\varepsilon}(x) [/mm] = X$.



>  > Wie entsteht jetzt die Topologie aus der Basis, die aus

> > allen Bällen besteht?
>  Ich weiß schon, dass die Metrik eine Topologie induziert,
> ich musst zeigen, dass diese Topologie diskret ist.
>  Sei [mm]\tau[/mm] die Topologie
>  ZZ.: [mm]\tau[/mm] = P(X)
>  Nach obiger überlegung gilt sicher: [mm]\{\{x\} | x \in X \} \subseteq \tau.[/mm]

[ok]

>  [mm]\tau[/mm] ist abgeschlossen unter beliebigen Vereinigungen
> [mm]=>\bigcup_{x\in I} \{x\} \in \tau,[/mm] (I .. Index)
>  => [mm]\tau[/mm] = [mm]2^X[/mm] sein


Alles richtig [ok]


Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de