www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Metrik induziert Topologie ?!?
Metrik induziert Topologie ?!? < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrik induziert Topologie ?!?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Mi 27.04.2005
Autor: Shaguar

Moin,
habe ein Problem mit folgender Aufgabe:
Sei X eine Menge mit den Elementen a, b, c, d, e
[m]O_{1}=\{ \emptyset, \{a\},\{a, c\},\{a, d\},\{a,c,d\},\{a,b,c,d,e\}\}[/m]
[m]O_{2}=P(x)[/m]

P(X) ist die Potenzmenge und [mm] O_i [/mm] sind Topologien
Und jetzt ist die Frage welche der Topologien durch eine Metrik auf X induziert ist? Ich denke mal, dass es [mm] O_2 [/mm] ist. Ich weiß nicht wie das induziert zu verstehen ist und wie ich auf Mengen einen Abstand definieren soll wofür ich dann die Metrikaxiome nachweisen kann darum geht es doch oder? Mehr kann ich als Lösungsansatz leider nicht bringen habe mich grade durch ziemlich viele Skripte durchgearbeitet komme aber nicht auf den Zusammenhang.

Vielen Dank

shaguar

        
Bezug
Metrik induziert Topologie ?!?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Mi 27.04.2005
Autor: Stefan

Hallo Philipp!

Die Topologie [mm] $O_1$ [/mm] ist nicht durch eine Metrik induziert.

Das kann man daran erkennen, dass sich die beiden Punkte $b$ und $c$ nicht durch offene Mengen voneinander trennen lassen. Sprich: Es gibt keine offenen Mengen [mm] $U_1 \in O_1$ [/mm] mit $b [mm] \in U_1$ [/mm] sowie [mm] $U_2 \in O_1$ [/mm] mit $c [mm] \in U_2$, [/mm] so dass [mm] $U_1 \cap U_2= \emptyset$. [/mm]

Man sagt dazu, die Topologie [mm] $O_1$ [/mm] ist nicht Hausdorffsch.

Eine Topologie, die von einer Metrik induziert wird (wo also die offenen Mengen genau dadurch charakterisiert sind, dass es um jeden Punkt einen [mm] $\varepsilon$-Ball [/mm] bezüglich einer festen Metrik $d$ gibt, der ganz in der Menge enthalten ist), ist aber immer Hausdorffsch, d.h. zwei verschiedene Punkte lassen sich durch offenen Mengen trennen.

Denn: Sind $x [mm] \ne [/mm] y$, so gilt: [mm] $d(x,y)=:\varepsilon>0$. [/mm] Dann leisten die beiden Bälle [mm] $B_d\left(x,\frac{\varepsilon}{2}\right)$ [/mm] und [mm] $B_d\left(y,\frac{\varepsilon}{2}\right)$ [/mm] das Gewünschte.

Die Topologie [mm] $O_2$, [/mm] bei der ja alle Teilmengen offen sind, ist dagegen metrisierbar, und zwar durch die recht triviale Metrik

$d(x,y) = [mm] \left\{ \begin{array}{ccc} 1 & , & \mbox{wenn} \quad x \ne y,\\[5pt] 0 & , & \mbox{wenn} \quad x=y. \end{array} \right.$ [/mm]

Es genügt zu zeigen, dass die einelementigen Mengen bezüglich der von dieser Metrik induzierten Topologie offen sind (denn dann sind alle Teilmengen als Vereinigung von offenen einelementigen Mengen offen).

Da ist aber wegen

[mm] $\{x\} [/mm] = [mm] \left\{y \in X\, :\, d(x,y) < \frac{1}{2}\right\} [/mm] = [mm] B_d\left(x,\frac{1}{2}\right)$ [/mm]

völlig klar.

Viele Grüße
Stefan

Bezug
                
Bezug
Metrik induziert Topologie ?!?: Druckreif
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:24 Mi 27.04.2005
Autor: Shaguar

Danke für die Antwort, wenn das doch nur so irgendwo mal stehen würde...
Mir ist jetzt endlich klar worums da geht.
Dankeschön

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de