www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Metriken nachweisen
Metriken nachweisen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metriken nachweisen: Probleme bei D. Ungl.
Status: (Frage) beantwortet Status 
Datum: 17:39 Mi 11.07.2012
Autor: clemenum

Aufgabe
Man zeige: Auf einem VR [mm] $(a_i)_{i\in \mathbb{N} }$ [/mm] mit [mm] $\sum_{i=0}^{\infty}a_i^2<\infty [/mm] $ ist [mm] $d((a_i),(b_i)) [/mm] := [mm] \sqrt{\sum_{i=0}^{\infty} (a_i - b_i)^2 } [/mm] $ eine Metrik.


Nun, die Symmetrie und die Definitheit waren mir so leicht zu zeigen, dass ich es nicht hineinstellen muss um sie kontrollieren zu lassen.
Jedoch hapert es bei der Dreiceksungleichung, da muss ich ja zeigen: [mm] $\sqrt{\sum_{i=0}^{\infty} (a_i - b_i)^2 } [/mm] + [mm] \sqrt{\sum_{i=0}^{\infty}(b_i-c_i)^2 } \ge \sqrt{\sum_{i=0}^{\infty}(a_i-c_i)^2 } [/mm] $
Das scheint doch (mit den gegebenen Voraussetzungen) eine ziemlich schwierige Angelegenheit zu sein.

Erste Frage:
Genügt es sich auf die Inhalte in den Klammern zu beschränken, d.h., genügt es zu zeigen:
[mm] $(a_i [/mm] - [mm] b_i)^2 [/mm] + [mm] (b_i [/mm] - [mm] c_i )^2 \ge (a_i [/mm] - [mm] c_i [/mm] ) ^2 $ ?
Selbst, wenn es genügt, wäre die Behauptung zwar deutlich einfacher aber noch immer schwierig genug.
Ich habe es ausmultipliziert, alles auf eine Seite gebracht und bekomme heraus:
[mm] $b_i [/mm] ^2 [mm] -b_i(a_i +c_i )-a_ic_i \ge [/mm] 0 $ und es sagt mir keine Voraussetzung, dass das tatsächlich stimmen muss, oder?

Kann mir da jemand weiterhelfen; offenbar ist hier Kreativität gefragt.

        
Bezug
Metriken nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Mi 11.07.2012
Autor: SEcki


> offenbar ist hier
> Kreativität gefragt.

Nein.

Weißt du denn, wie man für die euklidische Metrik die Dreiecksungleichung zeigt? Oder kannst du sie vorraussetzen? Dann musst du nur den Grenzübergang selber machen.

SEcki


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de