www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Metrische Raeume
Metrische Raeume < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrische Raeume: Beweis der Aufgabe?
Status: (Frage) beantwortet Status 
Datum: 10:13 Do 05.07.2007
Autor: makw

Aufgabe
Sei (X,d) ein metri. Raum. Man zeige:
Jede beli. abgeschlossene Menge A [mm] \subseteq [/mm] X laesst sich als abzaehlbarer Durchschnitt von offenen [mm] A_{\varepsilon} =\{x\in X | d(x,A) < \varepsilon \} [/mm] schreiben.

Mein Beweis:
" [mm] \subseteq [/mm] " Sei [mm] \varepsilon [/mm] = [mm] \bruch{1}{n} [/mm] . So ist klar, dass A [mm] \subseteq A_{\bruch{1}{n}} [/mm] ist, da fuer d(x,A)=0 nur die Menge A uebrig bleibt.

" [mm] \supseteq [/mm] " Sei x ein bel. Element aus dem Durchschnitt. So ist d(x,A) < [mm] \bruch{1}{n}. [/mm] Zieht man den Limes, so ist lim d(x,A) =0. Da A auch noch  abgeschlossen ist , ist A = [mm] \overline{A}. [/mm] Also x [mm] \in [/mm] A.


        
Bezug
Metrische Raeume: Antwort
Status: (Antwort) fertig Status 
Datum: 07:48 Fr 06.07.2007
Autor: Somebody


> Sei (X,d) ein metri. Raum. Man zeige:
>  Jede beli. abgeschlossene Menge A [mm]\subseteq[/mm] X laesst sich
> als abzaehlbarer Durchschnitt von offenen [mm]A_{\varepsilon} =\{x\in X | d(x,A) < \varepsilon \}[/mm]
> schreiben.
>  Mein Beweis:
> " [mm]\subseteq[/mm] " Sei [mm]\varepsilon[/mm] = [mm]\bruch{1}{n}[/mm] . So ist klar,
> dass A [mm]\subseteq A_{\bruch{1}{n}}[/mm] ist, da fuer d(x,A)=0 nur
> die Menge A uebrig bleibt.
>
> " [mm]\supseteq[/mm] " Sei x ein bel. Element aus dem Durchschnitt.
> So ist d(x,A) < [mm]\bruch{1}{n}.[/mm] Zieht man den Limes, so ist
> lim d(x,A) =0. Da A auch noch  abgeschlossen ist , ist A =
> [mm]\overline{A}.[/mm] Also x [mm]\in[/mm] A.

Ich denke: Deine Beweisidee ist schon richtig, nur würde ich einen solchen Beweis, wenn ich ihn in schriftlicher Form zur Benotung abzugeben hätte, sicher nicht so salopp formulieren wollen. Zum Beispiel wäre es eine gute Idee, die Behauptung in der Form hinzuschreiben, wie sie von Dir dann bewiesen wird. Etwa so: [mm] "$(A_{\frac{1}{n}})_{n\in\IN}$ [/mm] ist eine solche abzählbare Familie von offenen Mengen [mm] $A_\varepsilon \supseteq [/mm] A$, mit [mm] $A=\bigcap_{n\in \IN}A_{\frac{1}{n}}$." [/mm]
Denn Deine beiden Beweisrichtungen [mm] $\subseteq$ [/mm] und [mm] $\supseteq$ [/mm] beziehen sich auf diese nicht ausdrücklich hingeschriebene Aussage.

Ich hätte noch weitere "ästhetische Nörgeleien" dieser Art anzubringen, aber wenn Deine Frage sich nur auf die Richtigkeit der Beweisidee bezieht, dann sind weitere Kommentare eigentlich überflüssig...

Bezug
                
Bezug
Metrische Raeume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:41 Fr 06.07.2007
Autor: makw

Geht klar, ich sehe meine kleinen Fehler, aber ein Prof kann die Zwischenschritte erkennen. Trotzdem danke, gut zu wissen, das mein Beweisidee richtig ist.
Marian.









Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de