www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - MinPolynom einer Matrix
MinPolynom einer Matrix < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

MinPolynom einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Di 12.05.2009
Autor: ZodiacXP

Aufgabe
Berechne Min-Polynom von
$ [mm] \pmat{0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0} \in [/mm] M(3 [mm] \times [/mm] 3, [mm] \mathbb{Q}) [/mm] $

Bisschen geguckt, rumprobiert und dachte mir vielleicht ist das das Min-Polynom:

$P(A) = [mm] A^4 [/mm] - 2 [mm] \cdot [/mm] A$

Scheint auch zu passen aber durch raten macht man das bestimmt nicht.
Gibt es da ein System? Einen Algorithmus?

        
Bezug
MinPolynom einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Di 12.05.2009
Autor: angela.h.b.


> Berechne Min-Polynom von
>  [mm]\pmat{0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0} \in M(3 \times 3, \mathbb{Q})[/mm]
>  
> Bisschen geguckt, rumprobiert und dachte mir vielleicht ist
> das das Min-Polynom:
>  
> [mm]P(A) = A^4 - 2 \cdot A[/mm]
>  
> Scheint auch zu passen aber durch raten macht man das
> bestimmt nicht.
>  Gibt es da ein System? Einen Algorithmus?

Hallo,

das, was Du da gefunden hast, ist sicher nicht das Minimalpolynom.

Weißt Du denn, wie das Minimalpolynom einer Matrix definiert ist?

Zum Finden des Minimalpolynoms: das Minimalpolynom ist ein Teiler des charakteristischen Polynoms, welcher sämtliche Nullstellen mit dem charakteristischen Polynom gemeinsam hat - möglicherweise in kleinerer Vielfachheit.

Der Weg zum Minimalpolynom führt also bei gezielter Suche über das charakteristische Polynom.

Gruß v. Angela


Bezug
                
Bezug
MinPolynom einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:13 Di 12.05.2009
Autor: ZodiacXP

Ok. E sei Einheitsmatrix.

$ [mm] p_A [/mm] = det(A - [mm] \lambda [/mm] E) = [mm] \vmat{ -\lambda & 0 & 2 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda } [/mm] = [mm] \vmat{ 0 & - \lambda^2 & 2 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda } [/mm] = - [mm] \vmat{ 1 & -\lambda & 0 \\ 0 & - \lambda^2 & 2 \\ 0 & 1 & -\lambda } [/mm] = - [mm] \vmat{1} \cdot \vmat{- \lambda^2 & 2 \\ 1 & -\lambda} [/mm] = 2 - [mm] \lambda^3 [/mm] $

Teiler? Sehe keine. Gibt keine weiteren Nullstellen außer [mm] ($\wurzel[3]{2}$) [/mm]

Bleibt also bei $ 2 - [mm] \lambda^3 [/mm] $.
Hui. Ich liebe es. Mathe / LinA ist stumpf.

Jetz habe ich nur noch Probleme damit:

Ist das ein Problem, dass die Nullstellen [mm] ($\wurzel[3]{2}$) [/mm] außerhalb von [mm] $\mathbb{Q}$ [/mm] sind?

Und soll man die 2 ansehen als 2*E? (Weil $ 2*E - [mm] A^3 [/mm] = 0 $)

Bezug
                        
Bezug
MinPolynom einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:32 Di 12.05.2009
Autor: schachuzipus

Hallo ZodiacXP,

> Ok. E sei Einheitsmatrix.
>  
> [mm]p_A = det(A - \lambda E) = \vmat{ -\lambda & 0 & 2 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda } = \vmat{ 0 & - \lambda^2 & 2 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda } = - \vmat{ 1 & -\lambda & 0 \\ 0 & - \lambda^2 & 2 \\ 0 & 1 & -\lambda } = - \vmat{1} \cdot \vmat{- \lambda^2 & 2 \\ 1 & -\lambda} = 2 - \lambda^3[/mm] [ok]
>  
> Teiler? Sehe keine.

Na, echt nicht? Ich sehe einen ...

Es teilt sich ja selber!

> Gibt keine weiteren Nullstellen außer
> ([mm]\wurzel[3]{2}[/mm])
>  
> Bleibt also bei [mm]2 - \lambda^3 [/mm].
>  Hui. Ich liebe es. Mathe /
> LinA ist stumpf.
>  
> Jetz habe ich nur noch Probleme damit:
>  
> Ist das ein Problem, dass die Nullstellen ([mm]\wurzel[3]{2}[/mm])
> außerhalb von [mm]\mathbb{Q}[/mm] sind?

Eben, dass charakt. Polynom hat über [mm] $\IQ$ [/mm] keine NST(en), damit auch keinen echten Teiler, damit ist MinPol=charPol

>  
> Und soll man die 2 ansehen als 2*E? (Weil [mm]2*E - A^3 = 0 [/mm]) [ok]

Ja, $A$ ist immer NST des MinPol


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de