www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Minima, Maxima Sattelpkte.
Minima, Maxima Sattelpkte. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minima, Maxima Sattelpkte.: Frage
Status: (Frage) beantwortet Status 
Datum: 23:56 Di 21.06.2005
Autor: Berti

Hallo Leute
ich soll die Funktion f(x,y) =  [mm] x^{2} [/mm] + [mm] y^{2} [/mm] - 2x + 1 auf Minima, Maxima und Sattelpunkte auf  [mm] \IR^2 [/mm] untersuchen sowie auf der abgeschlossenen Einheitskreisscheibe K((0,0),1mit den partiellen Ableitungen komme ich auf x=1
y=-1/2
aber uns wurde gesagt, dass das für die existenz nicht ausreicht.
außerdem habe ich keine Ahnung wie ich Sattelpunkte bestimme.
und was ist mit dieser Einheitskreisscheibe gemeint?

        
Bezug
Minima, Maxima Sattelpkte.: Hessesche Matrix
Status: (Antwort) fertig Status 
Datum: 09:49 Mi 22.06.2005
Autor: angela.h.b.


> Hallo Leute
> ich soll die Funktion f(x,y) =  [mm]x^{2}[/mm] + [mm]y^{2}[/mm] - 2x + 1 auf
> Minima, Maxima und Sattelpunkte auf  [mm]\IR^2[/mm] untersuchen
> sowie auf der abgeschlossenen Einheitskreisscheibe
> K((0,0),1mit den partiellen Ableitungen komme ich auf x=1
>  y=-1/2

Hallo und Huuuch! Ich komme auf x=-1/2 und y=0.

>  aber uns wurde gesagt, dass das für die existenz nicht
> ausreicht.

Die Stellen, an denen grad f =0 ist, sind die Stellen, an denen lokale Extrema oder Sattelflächen vorliegen   können .  

Für genauere Aussagen mußt Du die Hessesche Matrix angucken. Ist sie pos. definit, hast Du ein Minimum, ist sie negativ definit, hast Du ein Maximum, ist sie indefinit gibt's einen Sattelpunkt.

(Es ist wie bei Funktionen mit einer Veränderlichen: 1.Ableitung=0 reicht da auch nicht.)

>  und was ist mit dieser Einheitskreisscheibe gemeint?

Das ist die Fläche eines  Kreises um den Nullpunkt mit Radius 1.
abgeschlossene Einheitskreisscheibe: der Rand gehört dazu, das ist in diesem Zusammenhang ganz wichtig.

Was die von Dir wollen, ist folgendes:
wenn alles gut gelaufen ist, hast Du inzwischen die lokalen Extremwerte bestimmt. Mal angenommen - ich hab's nicht überprüft!!! - Du hättest ein Maximum bei (-1/2, 0) ermittelt. Was bedeutet das? Es gibt eine (möglicherweise winzige) Umgebung dieses Punktes, in welcher die anderen Funktionswerte alle kleiner sind.
Was Du noch nicht weißt, ist, wie es auf dem Rand der Kreisscheibe aussieht. Stell' Dir vor, Du würdest aus dem Funktionengebirge diesen Kreis ausstanzen. Da mußt Du gucken, ob's auf dem Rand vielleicht noch Punkte gibt, deren Funktionswerte größer bzw. kleiner sind als alle anderen.  (Es ist dasselbe wie bei Funktionen einer Veränderlichen, die Du auf einem abgeschlossenen Intervall anguckst.)

Ich hoffe, mehr Klarheit als Verwirrung gestiftet zu haben.
Gruß
Angela





Bezug
                
Bezug
Minima, Maxima Sattelpkte.: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 Mi 22.06.2005
Autor: Berti

Danke das hat mir sehr weiter geholfen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de