www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Minimalpolynom
Minimalpolynom < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:03 Mo 26.06.2006
Autor: Pizzameister

Aufgabe
Es sei V ein endlich-dimensionaler K-Vektorraum, F € End(V) ein diagonalisierbarer Endomorphismus und a1,...,ar € K die paarweise verschiedenen Eigenwerte von F. Bestimmen sie das Minimalpolynom von F.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Kann mir einer sagen was ich da machen muss? Ich muss diese (und noch eine) Aufgabe bis donnerstag lösen und dann mündlich Vortragen sonst werde ich nicht zur Klausur zugelassen und mein Problem ist das ich im moment im völligen überstreß stehe und einfach nicht mehr weiter weis. Ich wäre sehr sehr sehr dankbar wenn mir einer helfen könnte (auch wenn meine Frage ohne eigenen Ansatz eigentlich gegen die Forenregeln verstößt).

        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 Mo 26.06.2006
Autor: Hanno

Hallo Pizzamann.

Das Minimalpolynom ist das kleinste Polynom, das $f$ als Nullstelle besitzt. Da nach Cayley-Hamilton $f$ Nullstelle von [mm] $\chi_f$ [/mm] ist, muss ferner [mm] $\mu_f$ [/mm] ein Teiler von [mm] $\chi_f$ [/mm] sein.

Weiterhin ist bekannt, dass die Eigenwerte von $f$ genau die Nullstellen von [mm] $\chi_f$ [/mm] sind. Zuletzt musst du noch wissen, dass für einen Eigenwert [mm] $\lambda$ [/mm] die Dimension des Eigenraumes zum Eigenwert [mm] $\lambda$ [/mm] stets kleiner gleich der Vielfachheit der Nullstelle von [mm] $\lambda$ [/mm] in [mm] $\chi_f$ [/mm] ist. Da $f$ diagonalisierbar ist, muss die Dimension der Eigenräume der Dimension von $V$ entsprechen. Daraus kannst du bereits einen "großen" Teiler von [mm] $\chi_f$ [/mm] bestimmen und über Gradvergleich sogar das Polynom [mm] $\chi_f$ [/mm] bestimmen.

Nun solltest du weiter wissen, dass jede Nullstelle von [mm] $\chi_f$ [/mm] auch Nullstelle von [mm] $\mu_f$ [/mm] ist. Als Minimalpolynom brauchst du also nur solche zu testen, die alle Linearfaktoren von [mm] $\chi_f$ [/mm] als Teiler besitzen. Prüfe in deinem Fall nun das einfachste aller solcher Polynome auf die Frage, ob es $f$ als Nullstelle besitzt.

Es ist hier praktisch, wenn du anstatt $f$ mit einer Darstellungsmatrix von $f$ rechnest.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de