www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Minimalpolynom
Minimalpolynom < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Wie ermittelt man das?
Status: (Frage) beantwortet Status 
Datum: 10:16 Mi 25.02.2009
Autor: valaida

Aufgabe
Sei $K:= [mm] \IQ (\sqrt{3},\sqrt{5})$ [/mm]

Bestimmen Sie Grad(K : [mm] \IQ) [/mm]

Lösung: Es ist [mm] $Grad(K:\IQ) [/mm] = [mm] Grad(K:\IQ (\sqrt{3}))*Grad(\IQ(\sqrt{3}):\IQ) [/mm] = 2*2 =4$

Hallo. Ich verstehe zwei Sachen nicht:

1.  warum in der Lösung oben gar kein [mm] \sqrt{5} [/mm] vorkommt

2. Wie ermittelt man die Grade davon?

Wir hatten [mm] \IQ(\sqrt{3}) [/mm] definiert als

[mm] $\IQ(\sqrt{3}) [/mm]  = [mm] \{a+b\sqrt{3} : a,b \in \IQ \}$ [/mm]

Hier lese ich die Basis 1 und [mm] \sqrt{3} [/mm] ab.

Jetzt würde ich es so erklären, dass [mm] Grad(\IQ(\sqrt{3}):\IQ) [/mm] = 2, weil die Basis von [mm] \IQ(\sqrt{3} [/mm] eben 1 und [mm] \sqrt{3} [/mm] ist. Obwohl, das kann auch nicht sein, weil eine Basis von [mm] \IQ [/mm] könnte ich gar nicht bestimmen, hatte erst gedacht, dass [mm] \sqrt{3} \in \IQ [/mm]

Also muss ich hier wohl das Minimalpolynom bestimmen. Jetzt weiß ich aber gar nicht, wie ich das mache.

Grüße,
valaida


        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Do 26.02.2009
Autor: schachuzipus

Hallo valaida,

> Sei [mm]K:= \IQ (\sqrt{3},\sqrt{5})[/mm]
>  
> Bestimmen Sie Grad(K : [mm]\IQ)[/mm]
>  
> Lösung: Es ist [mm]Grad(K:\IQ) = Grad(K:\IQ (\sqrt{3}))*Grad(\IQ(\sqrt{3}):\IQ) = 2*2 =4[/mm]
>  
> Hallo. Ich verstehe zwei Sachen nicht:
>  
> 1.  warum in der Lösung oben gar kein [mm]\sqrt{5}[/mm] vorkommt

[haee] das steckt doch in dem $K$ mit drin ...

>  
> 2. Wie ermittelt man die Grade davon?
>
> Wir hatten [mm]\IQ(\sqrt{3})[/mm] definiert als
>  
> [mm]\IQ(\sqrt{3}) = \{a+b\sqrt{3} : a,b \in \IQ \}[/mm] [ok]
>  
> Hier lese ich die Basis 1 und [mm]\sqrt{3}[/mm] ab. [ok]
>  
> Jetzt würde ich es so erklären, dass
> [mm]Grad(\IQ(\sqrt{3}):\IQ)[/mm] = 2, weil die Basis von
> [mm]\IQ(\sqrt{3})[/mm] eben 1 und [mm]\sqrt{3}[/mm] ist. [ok]

ganz genau!

> Obwohl, das kann auch  nicht sein, weil eine Basis von [mm]\IQ[/mm] könnte ich gar nicht
> bestimmen, hatte erst gedacht, dass [mm]\sqrt{3} \in \IQ[/mm]

Natürlich nicht, aber es ist doch in [mm] $\IQ(\sqrt{3}): [/mm] \ \ [mm] \sqrt{3}=\red{0}+\red{1}\cdot{}\sqrt{3}$ [/mm] mit Koeffizienten [mm] $\red{0,1\in\IQ}$ [/mm]

[mm] $\{1,\sqrt{3}\}$ [/mm] ist eine Basis von [mm] $\IQ(\sqrt{3})$ [/mm] als [mm] $\IQ$-Vektorraum. [/mm]

Du kannst [mm] $\IQ(\sqrt{3})$ [/mm] schreiben als Linearkombination von $1$ und [mm] $\sqrt{3}$ [/mm] mit rationalen Koeffizienzen, quasi [mm] $\IQ(\sqrt{3})=1\cdot{}\IQ+\sqrt{3}\cdot{}\IQ$ [/mm]

>  
> Also muss ich hier wohl das Minimalpolynom bestimmen. Jetzt
> weiß ich aber gar nicht, wie ich das mache.

Och?

Sei [mm] $\alpha=\sqrt{3}$, [/mm] dann ist [mm] $\alpha^2=3$, [/mm] also [mm] $\alpha^2-3=0$ [/mm]

Damit ist [mm] $\alpha$ [/mm] Nullstelle (Wurzel) des Polynoms [mm] $x^2-3\in\IQ[x]$, [/mm] also mit Koeffizienten in [mm] $\IQ$ [/mm]

Warum ist es schon minimal? Also warum kann es kein Polynom 1.Grades geben mit Nullstelle [mm] $\alpha$? [/mm]

Dann berechne mal das Minimalpolynom der Erweiterung [mm] $\underbrace{\IQ(\sqrt{3},\sqrt{5})}_{=\IQ(\sqrt{3})(\sqrt{5})}/\IQ(\sqrt{3})$ [/mm]

Dessen Koeffizienten sind aus [mm] $\IQ(\sqrt{3})$ [/mm] ...



>
> Grüße,
>  valaida
>  


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de