www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Minimalpolynom
Minimalpolynom < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Di 24.03.2009
Autor: kowi

Hallo

Angenommen, ich habe eine 5x5 Matrix A gegeben, dessen charakteristischen Polynom die Form

P(t) = - [mm] (t-2)^2(t-1)^3 [/mm] hat

Wie berechne ich jetzt am Besten das Minimalpolynom?

Muss ich jetzt echt alles durchrechnen, also

[mm] (A-2E)^1 [/mm] = 0 ?
[mm] (A-2E)^2 [/mm] = 0 ?

[mm] (A-E)^1 [/mm] = 0 ?
[mm] (A-E)^2 [/mm] = 0 ?
[mm] (A-E)^3 [/mm] = 0 ?

[mm] (A-2E)^1 *(A-E)^1 [/mm] = 0 ?
[mm] (A-2E)^1 *(A-E)^2 [/mm] = 0 ?
[mm] (A-2E)^1 *(A-E)^3 [/mm] = 0 ?

Ist das wirklich so rechenaufwändig?

Die Matrix A war übrigens

$A = [mm] \pmat{ 0&1&1&0&-2 \\ 1&-1&1&0&-1\\ 1&0&0&0&-1 \\ 1&0&1&0&-2 \\ 1&0&1&0&-2 }$ [/mm]

Ich danke euch schon mal

kowi



        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Di 24.03.2009
Autor: pelzig

Jeder Linearfaktor des charakteristischen Polynoms kommt auch im Minimalpolynom vor. Also genügt es die folgenden Polynome zu betrachten:

(t-2)(t-1)
[mm] (t-2)(t-1)^2 [/mm]
[mm] (t-2)(t-1)^3 [/mm]

und falls keins von denen A annuliert, ist das Minimalpolynom gleich dem charakteristischen Polynom.

Gruß, Robert

Bezug
                
Bezug
Minimalpolynom: Lesefehler?
Status: (Frage) beantwortet Status 
Datum: 15:56 Di 24.03.2009
Autor: kowi

Hallo pelzig. Danke für deine Antwort

> Jeder Linearfaktor des charakteristischen Polynoms kommt
> auch im Minimalpolynom vor.

Ok, wenn das gilt, warum dann nur

> Also genügt es die folgenden
> Polynome zu betrachten:
>  
> (t-2)(t-1)
>  [mm](t-2)(t-1)^2[/mm]
>  [mm](t-2)(t-1)^3[/mm]

Es war doch gerade P(t) = - $ [mm] (t-2)^2(t-1)^3 [/mm] $

(falls das Minimalpolynom bereits gefunden) Dann muss ich also auch noch die Fälle

[mm] $(t-2)^2(t-1)$ [/mm]
[mm] $(t-2)^2(t-1)^2$ [/mm]
[mm] $(t-2)^2(t-1)^3$ [/mm]

überprüfen, oder? Oder weswegen fallen die weg?


> und falls keins von denen A annuliert, ist das
> Minimalpolynom gleich dem charakteristischen Polynom.


Guter Hinweis, thanks

Liebe Grüße
kowi


Bezug
                        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Di 24.03.2009
Autor: pelzig


> Dann muss ich also auch noch die Fälle
> [mm](t-2)^2(t-1)[/mm]
> [mm](t-2)^2(t-1)^2[/mm]
> [mm](t-2)^2(t-1)^3[/mm]
>  
> überprüfen, oder? Oder weswegen fallen die weg?

Stimmt... hab ich vergessen.

Gruß, Robert

Bezug
                                
Bezug
Minimalpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:10 Di 24.03.2009
Autor: kowi


> > Dann muss ich also auch noch die Fälle
> > [mm](t-2)^2(t-1)[/mm]
>  > [mm](t-2)^2(t-1)^2[/mm]

>  > [mm](t-2)^2(t-1)^3[/mm]

>  >  
> > überprüfen, oder? Oder weswegen fallen die weg?
>  Stimmt... hab ich vergessen.

Macht nichts, die vorangegangene Erklärung war ja schon klasse. Vielen Dank, pelzig!

Liebe Grüße
kowi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de