www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Minimalpolynom
Minimalpolynom < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 Mi 12.05.2010
Autor: icarus89

Aufgabe
Zeige: Jedes Polynom über einem algebraisch abgeschlossenem Körper tritt als Minimalpolynom einer Matrix auf.

Heyho:

Wegen Primfaktorzerlegung (mit ein bisschen Begrüdnung...) reicht es zu zeigen, dass [mm] \forall \lambda \in \IK [/mm] und [mm] \forall k\in \IN [/mm] eine Matrix existiert mit Minimalpolynom [mm] (X-\lambda)^{k} [/mm]

So, ich will das mit Induktion beweisen. Für k=1 ist es klar. Und für [mm] k\to [/mm] k+1 will ich zeigen, dass für die Matrix [mm] M':=\pmat{ \lambda & x...y \\ 0 & M } [/mm] mit Nichtnulleinträgen über M gilt:

[mm] Minimalpolynom(M')=(X-\lambda)*Minimalpolynom(M) [/mm]

Klar ist, dass das Minimalpolynom(M) das Minimalpolynom(M') teilt.
Was mir noch nicht ganz klar ist, wie ich zeige, dass das Minimalpolynom(M) nicht schon Minimalpolynom(M') ist.
Dies ist hoffentlich so gegeben (wegen den Nichtnulleinträgen über M???)
Die M' bzw. der von M' beschriebene Endomorphismus eingesetzt in das Minimalpolynom ist ja 0. Kann ich also irgendeinen Vektor finden, sodass [mm] Minimalpolynom(M)(M*v)\not=0? [/mm]
Mir ist nur nicht klar, wie ich diesen Vektor wählen kann...

Wenn meine Idee denn überhaupt korrekt ist...



        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Mi 12.05.2010
Autor: SEcki


> Was mir noch nicht ganz klar ist, wie ich zeige, dass das
> Minimalpolynom(M) nicht schon Minimalpolynom(M') ist.

Das ist auch nicht klar, und bei beliebiger Wahl von [m]x...y[/m] auch einfach nur falsch. Betrachte mal [m]\pmat{ 1 & 0 \\ 0 & 1 },\pmat{ 1 & 1 \\ 0 & 1 }[/m] mit einzigem EW 1. Was sind jeweils die Minimalpolynome? Arbeite mal damit ...

Wenn nach eigenem Überlegen nichts rumkommt, google mal nach Jordankästchen / Zerlegung, dann sollte die Lösung klar werden.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de