www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Minimalpolynom Zerlegung
Minimalpolynom Zerlegung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom Zerlegung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:21 Mi 04.05.2011
Autor: pyw

Aufgabe
Beweise: Falls das Minimalpolynom [mm] m_T [/mm] von T eine Zerlegung [mm] m_T [/mm] = g · h mit
ggT(g, h) = 1 besitzt, dann gelten die folgenden Aussagen:
1. V = ker g(T ) [mm] \oplus [/mm] ker h(T ) =: U1 [mm] \oplus [/mm] U2

Man findet die Aufgabenstellung auch unter folgendem []Link, Aufgabe 3.

Hallo,

ich habe leider wenig Ideen.

Aus ggT(g,h)=1 folgt ja, dass es Polynome r und s gibt mit rg+sh=1

Vielleicht hilft es, wenn ich die Gleichung mit h multipliziere:
[mm] rgh+sh^2=h \Rightarrow s(T)h(T)^2=h(T), [/mm] denn [mm] h(T)g(T)=m_T(T)=0 [/mm]

Weiterhin [mm] s(T)h(T)^2=h(T) \gdw [/mm] s(T)h(T)(h(T)-1)=0.
Aber wahrscheinlich ist das nicht sehr hilfreich.

Bitte um Hilfe + einen Denkanstoß.

Danke!



mfg, pyw

        
Bezug
Minimalpolynom Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:11 Do 05.05.2011
Autor: fred97


> Beweise: Falls das Minimalpolynom [mm]m_T[/mm] von T eine Zerlegung
> [mm]m_T[/mm] = g · h mit
>  ggT(g, h) = 1 besitzt, dann gelten die folgenden
> Aussagen:
>  1. V = ker g(T ) [mm]\oplus[/mm] ker h(T ) =: U1 [mm]\oplus[/mm] U2
>  
> Man findet die Aufgabenstellung auch unter folgendem
> []Link,
> Aufgabe 3.
>  Hallo,
>  
> ich habe leider wenig Ideen.
>  
> Aus ggT(g,h)=1 folgt ja, dass es Polynome r und s gibt mit
> rg+sh=1
>  
> Vielleicht hilft es, wenn ich die Gleichung mit h
> multipliziere:
>  [mm]rgh+sh^2=h \Rightarrow s(T)h(T)^2=h(T),[/mm] denn
> [mm]h(T)g(T)=m_T(T)=0[/mm]
>  
> Weiterhin [mm]s(T)h(T)^2=h(T) \gdw[/mm] s(T)h(T)(h(T)-1)=0.
>  Aber wahrscheinlich ist das nicht sehr hilfreich.
>  
> Bitte um Hilfe + einen Denkanstoß.

Du hast:

      (1)      x=r(T)g(T)x+s(T)h(T)x

und

        (2)    g(T)h(T)x =0=h(T)g(T)x



für jedes x [mm] \inV [/mm]

Dann r(T)g(T)x [mm] \in [/mm] kern(h(T)) und s(T)h(T)x [mm] \in [/mm] kern (g(T))

Aus (1): V = ker g(T ) $+ $ ker h(T )

Jetzt zeig du, dass obige Summe direkt ist.

FRED

>  
> Danke!
>  
>
>
> mfg, pyw


Bezug
                
Bezug
Minimalpolynom Zerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 Sa 07.05.2011
Autor: pyw

Hallo,
> Du hast:
>  
> (1)      x=r(T)g(T)x+s(T)h(T)x
>
> und
>
> (2)    g(T)h(T)x =0=h(T)g(T)x
>  
>
>
> für jedes x [mm]\inV[/mm]
>  
> Dann r(T)g(T)x [mm]\in[/mm] kern(h(T)) und s(T)h(T)x [mm]\in[/mm] kern
> (g(T))
>  
> Aus (1): V = ker g(T ) [mm]+[/mm] ker h(T )
>  
> Jetzt zeig du, dass obige Summe direkt ist.

ok, danke!

Summe direkt: Weil ker g(T) [mm] \cap [/mm] ker [mm] f(T)=\{0\}, [/mm] denn wäre [mm] 0\neq x\in [/mm] ker f(t), ker g(T), dann r(T)g(T)x+s(T)h(T)x=0 ein Widerspruch zu (1)

mfg,pyw

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de