www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Minimierungsproblem
Minimierungsproblem < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimierungsproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:49 So 12.03.2017
Autor: Peter_123

Hallo,

wenn ich eine Kovarianzmatrix [mm]K[/mm] und die geschätze Kovarianzmatrix [mm] $\widehat{K}$ [/mm] (der Dimension $n [mm] \times [/mm] n$ habe und ich möchte das Minimierungsproblem

[mm] $\sum_{i \neq j}(\widehat{k_{ij}} [/mm] - [mm] k_{ij})^2 \to [/mm] min $ lösen -- summiere ich hier also über alle nicht-diagonal-Elemente auf und bilde die partiellen Ableitungen, setze diese = 0 und löse das entsprechende Gleichungssystem ?

Danke für Eure Hilfe.

LG Peter

        
Bezug
Minimierungsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 10:15 So 12.03.2017
Autor: Infinit

Hallo Peter,
ja, genau das ist die Vorgehensweise. Das Ganze sieht erst mal bombastisch aus, aber durch die partiellen Ableitungen bleibt jeweils genau ein Term übrig, den man dann zu Null setzt.
Viele Grüße,
Infinit

Bezug
        
Bezug
Minimierungsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 10:50 So 12.03.2017
Autor: fred97


> Hallo,
>
> wenn ich eine Kovarianzmatrix [mm]K[/mm] und die geschätze
> Kovarianzmatrix [mm]\widehat{K}[/mm] (der Dimension [mm]n \times n[/mm] habe
> und ich möchte das Minimierungsproblem
>
> [mm]\sum_{i \neq j}(\widehat{k_{ij}} - k_{ij})^2 \to min[/mm] lösen
> -- summiere ich hier also über alle
> nicht-diagonal-Elemente auf und bilde die partiellen
> Ableitungen, setze diese = 0 und löse das entsprechende
> Gleichungssystem ?


Das geht doch einfacher: eine Summe von Quadraten ist immer [mm] \ge [/mm] 0:

[mm] \summe_{i=1}^{n}a_i^2 \ge [/mm] 0. Weiter:

[mm] \summe_{i=1}^{n}a_i^2= [/mm] 0 [mm] \gdw a_1=...=a_n=0 [/mm]


>
> Danke für Eure Hilfe.
>  
> LG Peter  


Bezug
                
Bezug
Minimierungsproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:01 Mo 13.03.2017
Autor: Peter_123

Hallo,

vielen Dank für eure Beiträge.

Also eigentlich kommt die Frage daher, dass ich mit der Methode der kleinsten Quadrate eine Kovarianzmatrix schätzen möchte -- also genauer möchte ich eben die quadrierte Differenz aus der Beobachteten und der reproudzierten Kovarianzmatrix minimieren... das seltsame ist allerdings, dass ich mit obigem Verfahren genau die exakten Werte herausbringe... wo liegt denn da der Fehler?

LG

Bezug
                        
Bezug
Minimierungsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Mo 13.03.2017
Autor: leduart

Hallo
das ist kein Fehler, denn das Min ist ja eben, wenn die Gleich sind.
d,h, dieses Verfahren ist hier sinnlos.
du kannst nur mit dem Verfahren z, B, eine Faktor, den du ansetzt bestimmen wie bei Messungen wo du etwa die beste Geradem die durch deine Werte geht suchst .
da hast du aber eine Funktionsvorschrift,  mit der du vergleichst.
Gruß leduart

Bezug
                                
Bezug
Minimierungsproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:12 Di 14.03.2017
Autor: HJKweseleit

Ich weiß nicht, ob du für dein Problem das folgende Verfahren gebrauchen kannst:

Du hast eine Messreihe mit 2 Variablen [mm] x_i [/mm] und [mm] y_i [/mm] , [mm] 1\le [/mm] i [mm] \le [/mm] n, und suchst für ein bekanntes Gesetzt zwischen diesen Größen die Parameter, z.B.
y = [mm] a*e^{kx} [/mm] , a und k unbekannt.

Zuerst linearisierst du das Problem, in meinem Beispiel durch Logarithmieren:

ln(y) = ln(a)+kx

und substituierst

t=ln(y), A=ln(a) [mm] \Rightarrow [/mm] t = A + k x, A und k gesucht.

Nun erhältst du ein lineares Gleichungssystem

[mm] t_i [/mm] = A + k [mm] x_i [/mm] , [mm] 1\le [/mm] i [mm] \le [/mm] n, wobei die [mm] t_i [/mm] = [mm] ln(y_i) [/mm] sind.

Du erhältst eine Matrix M für das Gleichungssystem [mm] M*\vec{p}=\vec{t}, [/mm] wobei [mm] \vec{p} [/mm] die Parameter und [mm] \vec{t} [/mm] die [mm] t_i [/mm] enthält, hier

[mm] M*\vektor{A \\ k\\evtl. weitere Parameter}=\vektor{t_1 \\ t_2\\...\\t_n}, [/mm] wobei M aus den [mm] x_i [/mm] hervorgeht. In unserem Beispiel wäre [mm] M=\pmat{ 1 & x_1 \\ 1 & x_2\\...\\1 & x_n }. [/mm]

Wenn du genau so viele Gleichungen (Messungen) wie Parameter hättest, wäre i.a. das System eindeutig lösbar. Normaler Weise hat man aber mehr Messungen als Parameter, und wenn es Messfehler gibt bzw. die Messwerte nicht exakt mit der Theorie übereinstimmen, ist das Gleichungssystem nicht eindeutig lösbar, sondern mathematisch widersprüchlich und damit unlösbar.

Nun verlangt man: Wenn man links beliebige Parameterwerte einsetzt, erhält man für [mm] M*\vec{p}= \vec{z} [/mm] einen Spaltenvektor [mm] \vec{z}, [/mm] der von [mm] \vec{t} [/mm] abweicht. Gesucht ist jetzt derjenige Parametervektor [mm] \vec{p}, [/mm] bei dem die Summe der Quadrate der Abweichungen in den einzelnen Komponenten von [mm] \vec{z} [/mm] und [mm] \vec{t} [/mm] minimal wird (dann hat auch der Differenzvektor [mm] \vec{t}-\vec{z} [/mm] minimale Länge). Dieses Problem lässt sich nun elegant auf folgende Art lösen:

Man multipliziert das Gleichungssystem von links mit der transponierten Matris [mm] M^T [/mm] von M:

[mm] (M^T*M)*\vec{p}=M^T*\vec{t}. [/mm] Das ergibt links eine quadratische Matrix und rechts einen neuen (kürzeren) Spaltenvektor und damit ein "neues" Gleichungssystem, das i.a. eindeutig lösbar ist.

[mm] \vec{p} [/mm] enthält dann die Lösung für diejenigen Parameter, bei denen die Summe der o.a. Abweichungsquadrate minimal wird.

Damit hast du diejenigen Parameter gefunden, die am besten an deine Messreihe angepasst sind.

Bezug
                                        
Bezug
Minimierungsproblem: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:36 So 02.04.2017
Autor: Peter_123

Hallo,


danke für all eure Antworten -- ich hätte da noch eine Frage.

Bei der Faktorenanalyse kann man die Kovarianzmatrix

\Sigma = LL^{T} +D darstellen (falls das Modell stimmt).

Es bezeichne \widehat{\Sigma} = LL^{T} die empirische Kovarianzmatrix, welche sich von der tatsächlichen nur durch die Diagonalelemente unterscheidet.

\widetilde{\Sigma} = \widetilde{L} \widetilde{L}^{T} + \widetidle{D} bezeichne die geschätzte aus dem Modell.

Wenn wir annehmen, dass wir beim schätzen von L einen Fehler \Delta machen, so wäre also

\widetilde{L} \widetilde{L}^{T} \approx LL^{T} + L \Delta^{T} + L^{T} \Delta

Ich bin nun an der Verteilung des Minimierungsproblems

\sum_{i \neq j}(\widetilde{\sigma_{ij}} - \widehat{\sigma_{ij}})^2 \to min

interessiert. Und es sollte sich eine verallgemeinerung der Chi-Quadrat-Verteilung ergeben (die Summe über die quadrate beliebiger normalverteilter Zufallsgrößen ist so verteilt) .. dazu müsste aber :

\widetilde{\Sigma} - \widehat{\Sigma} normalverteilt sein.. könnte man das irgendwie einsehen ?

VIelen Dank und LG

habe diese Frage auch (leider erfolgslos) beim Matheplanet gestellt.



Bezug
                                                
Bezug
Minimierungsproblem: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:55 Mo 03.04.2017
Autor: Peter_123

Eventuell indem man die Kovarianzmatrizen speziell zerlegt , oder transformiert?

Bezug
                                                        
Bezug
Minimierungsproblem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Mi 05.04.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                                
Bezug
Minimierungsproblem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Di 04.04.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de