www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Minimum, Maximum, Polynom
Minimum, Maximum, Polynom < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimum, Maximum, Polynom: Hilfeee
Status: (Frage) beantwortet Status 
Datum: 17:13 Mi 31.10.2012
Autor: Lisa12

Aufgabe
min hj/bj <= (h1+...+hn)/(b1+...+bn) <= max hj/bj

Hallo,
ich hab oben beschriebene Aufgabe zu lösen und ich habe keinen kleinsten Schimmer?
Kann mir bitte jemand wenigstens einen Ansatz geben?!
LG
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Minimum, Maximum, Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Mi 31.10.2012
Autor: Marcel

Hallo,

> min hj/bj <= (h1+...+hn)/(b1+...+bn) <= max hj/bj
>  Hallo,
>  ich hab oben beschriebene Aufgabe zu lösen und ich habe
> keinen kleinsten Schimmer?

welche Voraussetzungen an die [mm] $h_\ell, \;b_\ell$ ($\ell=1,\ldots,n$) [/mm] verschweigst Du uns denn?

Wenn man gar keine Idee hat:
Für [mm] $n=1\,$ [/mm] ist die Behauptung klar, und für [mm] $n=2\,$ [/mm] nimm' mal
o.B.d.A. an, dass
[mm] $$h_1/b_1 \le h_2/b_2$$ [/mm]
gelte.

Zu zeigen ist für [mm] $n=2\,$ [/mm] dann, dass auch
[mm] $$\frac{h_1}{b_1} \le \frac{h_1+h_2}{b_1+b_2} \le \frac{h_2}{b_2}$$ [/mm]
gilt. "Zerlege" diese Ungleichungskette in zwei Ungleichungen, die Du
getrennt beweist!

Ich hab' mir noch nichts weiter überlegt, aber schlimmstenfalls kann man
sich dann mal Gedanken machen, ob Induktion zum Ziele führt...

P.S. Vielleicht kann man auch schneller zum Ziel kommen, wenn man
irgendwie o.B.d.A. [mm] $\frac{h_1}{b_1} \le \frac{h_2}{b_2} \le \ldots \le \frac{h_n}{b_n}$ [/mm] annimmt. Auch mit solch' einem Ansatz kommt man
eventuell zum Ziel - schreibt dann hin, was behauptet wird, rechnet mit
Summen und guckt, ob man so eine ÄQUIVALENTE Ungleichungskette
nachgerechnet hat, deren Richtigkeit man begründen kann!

Ich denke aber, dass da noch Voraussetzungen gegeben sind, die Du nicht
aufgeführt hast (insbesondere habe ich die Vermutung, dass alle [mm] $b_\ell [/mm] > 0$
sein sollen!)

Gruß,
  Marcel

Bezug
                
Bezug
Minimum, Maximum, Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:13 Mi 31.10.2012
Autor: Lisa12

j läuft von 1 bis n und ja, es handelt sich um positive reelle Zahlen! Versuche mal deinen Ansatz weiterzuführen! Danke schonmal!!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de