www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Minkowski-Funktional
Minkowski-Funktional < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minkowski-Funktional: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:41 Mi 04.05.2011
Autor: physicus

Hallo Forum

Leider kann ich nicht zeigen, dass für eine konvexe, absorbierende und ausgewogene Menge L, dass dazugehörige Minkowski-Funktional $\ [mm] \mu_L$ [/mm] homogen ist:

[mm] \mu_L(\alpha x) = |\alpha| \mu_L(\alpha) [/mm]

Aufgrund der Konvexität kann ich ja die Dreiecksungleichung zeigen. Mittels Ausgewogenheit sollte ich dann die Homogenität zeigen können. Leider schaffe ich das nicht. Natürlich habe ich das Netz schon durchforstet, aber keine zufriedenstellende Lösung gefunden.


Danke und Gruss

physicus

        
Bezug
Minkowski-Funktional: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Mi 04.05.2011
Autor: fred97

Dass Du Dich in einem lokalkonvexen top. Vektorraum V befindest, hättest Du schon sagen können.

Ich zeig Dir wie es geht, aber nur weil ich (mal wieder) diese Aufgabe für eine Übungsaufgabe für zu schwer empfinde.

Um Schreibarbeit zu sparen, bezeichne ich das Minkowski-Funktional von L mit f. Der Skalarkörper sei K (also K= [mm] \IR [/mm] oder K= [mm] \IC) [/mm]

Zu zeigen ist also:

                    f(tx)=|t|f(x)  für t [mm] \in [/mm] K und x [mm] \in [/mm] V.

Wegen o [mm] \in [/mm] L , ist

              $  f(0*x)= f(0)= inf [mm] \{s>0: 0 \in sL\}=0=0*f(x)$ [/mm]

Sei t>0. Dann:

                $f(tx)= inf [mm] \{s>0: tx \in sL\}= inf\{ s>0: x \in (s/t)L\}= [/mm] t* [mm] inf\{a>0: x \in aL\}=tf(x)$ [/mm]

Jetzt sei |t|=1.Da L ausgewogen ist, gilt tx [mm] \in [/mm] sL   [mm] \gdw [/mm] x [mm] \in [/mm] sL, also ist f(tx)=f(x).

Sei t beliebig, aber [mm] \ne [/mm] 0. Mit dem schon Bewiesenen erhalten wir:

$f(tx)= [mm] f(|t|*\bruch{t}{|t|}*x)= |t|f(\bruch{t}{|t|}*x)=|t|f(x).$ [/mm]

FRED

Bezug
                
Bezug
Minkowski-Funktional: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:30 Mi 04.05.2011
Autor: physicus

Hallo FRED,

Danke für deinen Beweis. Ich verwende aber nicht, dass mein Raum ein lokal konvexer topologischer Vektorraum ist. Alles was ich brauche ist, dass mein Raum ein Vektorraum ist, und meine Menge konvex, absorbierend und ausgewogen. Natürlich wird dies nachher für eine entsprechende lokale Basis gebraucht.

Nur eine kleine Fragen

> Sei t>0. Dann:
>  
> [mm]f(tx)= inf \{s>0: tx \in sL\}= inf\{ s>0: x \in (s/t)L\}= t* inf\{a>0: x \in aL\}=tf(x)[/mm]
>  

Wieso darf ich das t nicht schon bei der ersten Gleichung einfach hinausziehen? (für positives t). Was ist dein a?, kann man das nicht explizit angeben?

Noch eine weitere Frage: Die Äquivalenz von [mm] tx \in sL \gdw x \in sL, |t|=1 [/mm]. Die Richtung "$\ [mm] \Leftarrow [/mm] $" ist ja Definition. Aber von wo weiss ich, dass wenn $\ tx [mm] \in [/mm] sL $ gilt für ein $\ |t|=1$ dass x dann in $\ sL $ liegt? Klar ist, dass $\ sL $ ebenfalls ausgewogen ist. Die Definition von ausgewogen gibt mir ja gerade für ein $\ x [mm] \in [/mm] sL$ folgt das die Multiplikation mit einer (salopp gesprochen) kleinen Zahl wieder in $\ sL$ ist. Die Umkehrung oben gilt doch nicht. Ich müsste ja verwenden, dass $\ x [mm] \in [/mm] sL $ ist, aber das will ich ja zeigen.

Danke für die Klärung meiner Frage. Allerdings war dies keine Übungsaufgabe. Ich wollte mich einfach einmal mit lokalkonvexern topologischen Vektorräumen befassen, da auf solche immer wieder in verschiedenen Vorlesungen hingewiesen wird. Dabei habe ich diese Aussage gelesen und wollte sie beweisen.

Gruss

physicus

Bezug
                        
Bezug
Minkowski-Funktional: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 04.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de