www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Mittelwertsatz
Mittelwertsatz < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 Mo 12.10.2009
Autor: Woodstock_x

Hallo Leute,

ich habe in meinen Hefter folgende Umformung durch den Mittelwertsatz:

[mm] \integral_{\bruch{-\varepsilon}{2}}^{\bruch{\varepsilon}{2}}{u(x) * V(x)dx}= \varepsilon*V(x_{0})* [/mm]

Diese Umformung gehört zu einer Vorlesung zur Quantenmechanik. Kann mir jemand diesen Schritt erklären?

Viele Grüße

        
Bezug
Mittelwertsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Mo 12.10.2009
Autor: felixf

Hallo!

> ich habe in meinen Hefter folgende Umformung durch den
> Mittelwertsatz:
>  
> [mm]\integral_{\bruch{-\varepsilon}{2}}^{\bruch{\varepsilon}{2}}{u(x) * V(x)dx}= \varepsilon*V(x_{0})*[/mm]

Da fehlt vermutlich ein "es gibt ein [mm] $x_0 \in (-\varepsilon/2, \varepsilon/2)$ [/mm] (oder [mm] $[-\varepsilon/2, \varepsilon/2]$)[i] [/mm] mit"[/i] davor, oder?

Und wofuer steht [mm] $\langle [/mm] u [mm] \rangle$? [/mm] Und was weisst du ueber die Funktionen $u$ und $V$?

LG Felix


Bezug
        
Bezug
Mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Di 13.10.2009
Autor: Doing

Ich geh mal davon aus, dass die notwendigen Eigenschaften der Funktionen vorrausgesetzt werden.

[mm] = \bruch{1}{\epsilon} \integral_{\bruch{-\epsilon}{2}}^{\bruch{\epsilon}{2}}{u(x) dx} [/mm] ist der Mittelwert.
Damit folgt unmittelbar aus dem Mittelwertsatz, dass es ein [mm] x_0 \in [- \epsilon /2 , \epsilon /2] [/mm] gibt sodass:

[mm] \integral_{-\bruch{\epsilon}{2}}^{\bruch{\epsilon}{2}}{u(x)V(x) dx} = V(x_0)\integral_{-\bruch{\epsilon}{2}}^{\bruch{\epsilon}{2}}{u(x) dx}= \epsilon V(x_0) [/mm]

Bezug
                
Bezug
Mittelwertsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 Di 13.10.2009
Autor: Woodstock_x

Danke, dass reicht mir als Begründung.

Bezug
                
Bezug
Mittelwertsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:24 Di 13.10.2009
Autor: felixf

Hallo!

> Ich geh mal davon aus, dass die notwendigen Eigenschaften
> der Funktionen vorrausgesetzt werden.
>  
> [mm]= \bruch{1}{\epsilon} \integral_{\bruch{-\epsilon}{2}}^{\bruch{\epsilon}{2}}{u(x) dx}[/mm]
> ist der Mittelwert.

Ah, gut zu wissen. Damit ist es dann wirklich leicht.

Lieber Fragesteller, warum hast du das nicht gleich mit dazugeschrieben? Oder mal irgendwann auf meine Nachfrage reagiert?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de