Mittelwertungleichung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:59 Di 02.10.2012 | Autor: | Urmeli |
Aufgabe | Zeige folgende Ungleichungen unter Verwendung der Mittelwertungleichung
[mm] (1+x)^a-1>ax [/mm] mit x ist Element aus ]0,unendlich[ und a ist Element aus ]1,unendlich[
[mm] (1+x)^a-1 |
Kann mir vllt. jemand einen Tipp geben wie ich da mit der Mittelwertungleichung ran gehe? Ich hatte bis jetzt nur die Formel [mm] (1+x)^a-1 [/mm] geschrieben als [mm] 1^a+a*x+x^a-1 [/mm] und da bleibt ja dann nur [mm] ax+x^a [/mm] über. Jetzt dacht ich mir wenn a Element aus ]1,unendlich[ dann muss [mm] x^a>1 [/mm] und damit folgt dann letzenlich die erste Aussage. Aber das hat ja nichts mit der Mittelwertungleichung zu tun =(
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:59 Di 02.10.2012 | Autor: | leduart |
Hallo
schlimm ist erstmal deine Umformung:$ [mm] (1+x)^a-1 [/mm] $ geschrieben als $ [mm] 1^a+a\cdot{}x+x^a-1 [/mm] $
wie kommst du denn da drauf? kennst du allgemeine binomische Formeln?
dann weiss ich nicht was ihr die Mittelwertungleichung nennt, bitte schreib das auf.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:36 Mi 03.10.2012 | Autor: | Urmeli |
oh ja tut mir leid. also zu der Umformung von [mm] (1+x)^a=\sum_{k=0}^{a} [/mm] {a [mm] \choose [/mm] k} *1^(a-k) [mm] *x^k [/mm]
und in der Vorlesung hatten wir 2 Mittelwertungleichung:
Mittelwertungleichung 1:
Sei [mm] (Y,II.II_y) [/mm] ein Banachraum , [a,b]Intervall und f:[a,b]--> Y sei diffbar auf [a,b]. Dann sei
II [mm] f(b)-f(a)II_y \le [/mm] sup { II [mm] \bruch{d}{dx} [/mm] f(t) [mm] II_y [/mm] /a [mm] \le [/mm] t [mm] \le [/mm] b}*(a-b)
Mittelwertungleichung 2:
Sei [mm] (Y,II.II_y), (X,II.II_x) [/mm] ein Banachräume , U Teilmenge von X offen, [x,y] Teilmenge von U, f:U--> Y sei diffbar. Dann sei
II [mm] f(y)-f(x)II_y \le [/mm] sup { II [mm] Df(\varphi) [/mm] II_(x-->y) / [mm] \varphi [/mm] ist Element aus [x,y]}*II y-x [mm] II_x
[/mm]
Die großen II.II sollen Norm Striche sein...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:15 Mi 03.10.2012 | Autor: | leduart |
Hallo
wende den 1.Satz auf das Intervall [0,x] an, aber für die erste Ungl brauchst du [mm] f(x)-f(0)\ge [/mm] inf f'(t) [mm] 9\le t\le [/mm] x
für die zweite das sup
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:59 Mi 03.10.2012 | Autor: | Urmeli |
ich weiß das ist bestimmt gar nicht so schwer, aber ich habs immernoch nicht ganz =(
also ich hab jetzt
f(x)-f(0)= [mm] (1+x)^a [/mm] -1 > inf(a*(x+1)^(a-1))*x und wegen der Linearität folgt: ax*inf((x+1)^(a-1)). Am liebsten würde ich das inf((x+1)^(a-1)) jetzt einfach rausstreichen und fertig Bin ich schon auf den richtigen Weg oder total falsch? Danke für deine Hilfe das ist echt lieb =)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:35 Mi 03.10.2012 | Autor: | leduart |
Hallo
du wirst doch wohl inf((x+1)^(a-1)). für a-1>0 rausfinden?
was passiert denn wenn x von 0 an wächst?
Gruss leduart
|
|
|
|