www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Mitternachtsformel
Mitternachtsformel < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mitternachtsformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Do 23.04.2015
Autor: marcello0611

Aufgabe
Die Quadratische Gleichung xhoch2+bx+c=0 hat dir Lösungen x1=2 und x2= -5. Geben sie die Gleichung an

Hey, ich schreibe morgen eine Klassenarbeit & bin eigentlich recht gut in Mathe bloß verstehe ich die Aufgabenstellung nicht. Wie soll ich den bx oder c ausrechnen wenn ich nicht mal weiß ob ich x1 oder x2 in die Gleichung einsetzen muss?

Ich hoffe mir kann jemand helfen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Mitternachtsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Do 23.04.2015
Autor: chrisno

Dir fehlt, wie auch bei der vorigen Frage, ein Stück Wissen.
Wenn x = 2 und x = -5 Lösungen der quadratischen Gleichung [mm] $x^2 [/mm] + bx +c = 0$ sind,
dann gilt auch [mm] $(x-2)\cdot [/mm] (x+5) = 0$. (achte auf die Vorzeichen) Nun multipliziere diese Klammern mal aus.

Bezug
                
Bezug
Mitternachtsformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Do 23.04.2015
Autor: marcello0611

Dann wäre meine Gleichung

Xhoch2+3x-10=0 ???

Und wieso ist das Vorzeichen bei -5 + und bei 2 aufeinmal -?

Aufjedenfall danke für deine Hilfe

Bezug
                        
Bezug
Mitternachtsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Do 23.04.2015
Autor: chrisno


> Dann wäre meine Gleichung
>  
> Xhoch2+3x-10=0 ???

Das kannst Du selbst prüfen. Löse die quadratische Gleichung.


>  
> Und wieso ist das Vorzeichen bei -5 + und bei 2 aufeinmal -?

Erste Antwort: das ist so und merke es Dir.
Zweite Antwort: rechne es nach
$(x - [mm] z_1) \cdot [/mm] (x - [mm] z_2) [/mm] = 0$ ausmultiplzieren, sortieren und mit
[mm] $x^2 [/mm] + p [mm] \cdot [/mm] x + q = 0$ vergleichen.
Dann kommt heraus, dass $p = [mm] -(z_1 [/mm] + [mm] z_2)$ [/mm] sein muss und $q = [mm] z_1 \cdot z_2$. [/mm]
Nun setze diese p und q in die Mitternachtsformel ein.
Ganz am Ende steht dann [mm] $x_1 [/mm] = [mm] z_1$ [/mm] und [mm] $x_2 [/mm] = [mm] z_2$. [/mm]
Es kommt also nur richtig heraus, wenn da die Minuszeichen in $(x - [mm] z_1) \cdot [/mm] (x - [mm] z_2) [/mm] = 0$ stehen.

Bezug
        
Bezug
Mitternachtsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Do 23.04.2015
Autor: Marcel

Hallo,

> Die Quadratische Gleichung xhoch2+bx+c=0 hat dir Lösungen
> x1=2 und x2= -5. Geben sie die Gleichung an
>  Hey, ich schreibe morgen eine Klassenarbeit & bin
> eigentlich recht gut in Mathe bloß verstehe ich die
> Aufgabenstellung nicht. Wie soll ich den bx oder c
> ausrechnen wenn ich nicht mal weiß ob ich x1 oder x2 in
> die Gleichung einsetzen muss?
>  
> Ich hoffe mir kann jemand helfen

es wurde ja schon gesagt, wie Du eigentlich vorgehen solltest. Jetzt mal
ein etwas *unkonventienellerer* Weg:

    [mm] $x^2+bx+c=0\,$ [/mm] habe die Lösungsmenge [mm] $L=\{-5,\,2\}\,.$ [/mm]

(Übrigens ist das die Mitternachtsformel nur für den Spezialfall [mm] $a=1\,,$ [/mm] was
man dann als pq-Formel kennt: Hier wäre p=b und q=c.)

Also ist

Fall a)    [mm] $\frac{-b}{2}+\sqrt{b^2/4-c}=-5$ [/mm] und [mm] $\frac{-b}{2}-\sqrt{b^2/4-c}=2$ [/mm]

oder eben

Fall b)    [mm] $\frac{-b}{2}+\sqrt{b^2/4-c}=2$ [/mm] und [mm] $\frac{-b}{2}-\sqrt{b^2/4-c}=-5\,.$ [/mm]

Fall a) ist unmöglich (ist Dir klar, warum?). Also weißt Du

    [mm] $\frac{-b}{2}+\sqrt{b^2/4-c}=2$ [/mm] und [mm] $\frac{-b}{2}-\sqrt{b^2/4-c}=-5\,.$ [/mm]

Addierst Du diese beiden Gleichungen, so folgt [mm] $-b=-3\,$ [/mm] bzw. [mm] $b=3\,.$ [/mm] Dieses
Ergebnis setzt Du in eine der beiden Gleichungen ein und erhältst, wenn Du
dann nach c auflöst: [mm] $c=-10\,.$ [/mm]

Nebenbei: Kennst Du den []Satz von Vieta? Um's mal ganz klar zu formulieren:
Da steht nichts weltbewegendes, man schreibt einfach nur

    [mm] $(x-x_1)*(x-x_2)=...=x^2+(-(x_1+x_2))*x+x_1*x_2$ [/mm]

aus und vergleicht das Ergebnis (ganz rechts) mit

    [mm] $x^2+px+q\,.$ [/mm]

(Genauer: Koeffizientenvergleich!)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de