Mittlere Geschwindigkeit < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:24 Do 14.02.2019 | Autor: | Trikolon |
Hallo, stehe gerade auf einem dicken Schlauch! Wenn die Aufgabenstellung lautet: Bestimme die mittlere Geschwindigkeit in einem gegebenen Zeitintervall [a,b] (also es wäre dann eine entsprechende Funktionsgleichung f gegeben mit Geschwindigkeits-Zeit-Diagramm ), muss man dann mit dem Mittelwert der Integralrechnung arbeiten? Weil man im Rahmen der Differentialrechnung ja gelernt hat, dass die Durchschnittsgeschwindigkeit (f(b)-f(a))/(b-a) ist. Bin gerade verwirrt, wo in diesem Kontext der Unterschied liegt.
|
|
|
|
Status: |
(Antwort) fehlerhaft | Datum: | 16:27 Do 14.02.2019 | Autor: | M.Rex |
Hallo,
Wenn du ein v-t-Diagramm hast, berechnest du mit der Sekantensteigung [mm] \frac{v(b)-v(a)}{b-a} [/mm] die Mittlere Geschwindigkeit im Zeitintervall [a;b].
In dem Fall brauchst du also keine Integralgrechnung, die Fläche unter der Kurve wäre hier ein Maß für die zurückgelegte Strecke.
Wenn du hingegen ein a-t-Diagramm hast, ist die Fläche dann ein Maß für die Durchschnittsgeschwindigkeit in dem Intervall.
Marius
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:43 Do 14.02.2019 | Autor: | Trikolon |
Das wird mir ehrlich gesagt nicht ganz klar. Wenn ich die Fläche im v-t-Diagramm berechne und durch das Zeitintervall dividiere erhalte ich doch auch eine Durchschnittsgeschwindigkeit, allerdings eine andere als bei der Sekantensteigung. Auch in meinem Buch ist der Arbeitsauftrag, die mittlere Geschwindigkeit einer Fkt v(t) zu bestimmen im Rahmen des Mittelwerts beim Integral auffindbar.
|
|
|
|
|
Hiho,
> Das wird mir ehrlich gesagt nicht ganz klar. Wenn ich die
> Fläche im v-t-Diagramm berechne und durch das
> Zeitintervall dividiere erhalte ich doch auch eine
> Durchschnittsgeschwindigkeit, allerdings eine andere als
> bei der Sekantensteigung.
Korrekt, weil die Sekantensteigung die mittlere Beschleunigung ist.
Da lag Marius mit seiner Antwort leider daneben.
> Auch in meinem Buch ist der Arbeitsauftrag, die mittlere Geschwindigkeit einer Fkt v(t)
> zu bestimmen im Rahmen des Mittelwerts beim Integral auffindbar.
Das ist auch korrekt. Das "Warum" wird deine Verwirrtheit auflösen, aber beginnen wir mal von vorne:
Du schriebst:
> Bestimme die mittlere Geschwindigkeit in einem gegebenen Zeitintervall [a,b] (also es wäre dann eine entsprechende Funktionsgleichung f gegeben mit Geschwindigkeits-Zeit-Diagramm ), muss man dann mit dem Mittelwert der Integralrechnung arbeiten? Weil man im Rahmen der Differentialrechnung ja gelernt hat, dass die Durchschnittsgeschwindigkeit (f(b)-f(a))/(b-a) ist.
Erstmal: Wo soll man das gelernt haben?
Die Durchschnittsgeschwindigkeit ist dann durch [mm] $\bruch{f(b) - f(a)}{b-a}$ [/mm] gegeben, wenn $f$ die Orts-Zeit-Funktion ist, nennen wir die hier physikalisch konventionsgetreu mal lieber $s$ statt $f$.
Warum ist das die Durchschnittsgeschwindigkeit? Nunja, nach dem Mittelwertsatz der Differenzialrechnung, gibt es ein [mm] $\xi \in [/mm] (a,b)$ so dass [mm] $s'(\xi) [/mm] = [mm] \bruch{s(b) - s(a)}{b-a}$
[/mm]
Die Ableitung der Orts-Zeit-Funktion $s'$ ist nun aber gerade die Geschwindigkeit $v$, d.h. es gilt [mm] $s'(\xi) [/mm] = [mm] v(\xi)$.
[/mm]
Stellt man obige Gleichung um, erhält man damit: $s(b) = s(a) + [mm] v(\xi)(b-a)$
[/mm]
Oder in Worten: [mm] $v(\xi)$ [/mm] ist die konstante Geschwindigkeit, die man fahren muss, um in der Zeit (b-a) vom Startpunkt s(a) zum Endpunkt s(b) zu kommen.
Das ist also das, was man gemeinhin als "Durchschnittsgeschwindigkeit" versteht: Die konstante(!) Geschwindigkeit, die ich fahren müsste, um in der gegebenen Zeit von s(a) nach s(b) zu kommen.
---- Bis hierhin: Verstanden? ----
Nun zu deiner Aufgabe: Gegeben ist ein v-t-Diagramm, d.h. es ist die Funktion v(t) gegeben.
Nach selber Argumentation wie oben ist [mm] $\bruch{v(b) - v(a)}{b-a} [/mm] = [mm] v'(\xi)$ [/mm] für ein [mm] $\xi \in [/mm] (a,b)$ und v' ist nun aber leider keine Geschwindigkeit mehr, sondern eine Beschleunigung.
Für unsere Durchschnittsgeschwindigkeit [mm] $v(\xi)$ [/mm] bräuchten wir also wieder unseren Ausdruck [mm] $\bruch{s(b) - s(a)}{b-a}$
[/mm]
Kriegen wir den aus v(t) irgendwie hergezaubert?
Machen wir uns zunutze, dass $s'(t) = v(t)$ gilt:
Umgekehrt folgt daraus nämlich $s(t) = s(a) + [mm] \int_a^t [/mm] v(s) ds$
D.h. wir bekommen: [mm] $v(\xi) [/mm] = [mm] \bruch{s(b) - s(a)}{b-a} [/mm] = [mm] \bruch{ \int_a^b v(s) ds}{b-a}$ [/mm] für ein [mm] $\xi \in [/mm] (a,b)$
Oder umgestellt: [mm] $v(\xi)(b-a) [/mm] = [mm] \int_a^b [/mm] v(s) ds$ für ein [mm] $\xi \in [/mm] (a,b)$
Was nun, oh Überraschung, nichts anderes ist, als der Mittelwertsatz der Integralrechnung.
Daher brauchen wir den zur Berechnung der Durchschnittsgeschwindigkeit aus der Geschwindigkeits-Zeit-Funktion.
Viel Stoff, vermutlich hast du noch Fragen.
Daher: Frag.
Gruß,
Gono
|
|
|
|
|
Status: |
(Korrektur) fundamentaler Fehler | Datum: | 19:48 Do 14.02.2019 | Autor: | Gonozal_IX |
Hallo Marius,
> Wenn du ein v-t-Diagramm hast, berechnest du mit der
> Sekantensteigung [mm]\frac{v(b)-v(a)}{b-a}[/mm] die Mittlere
> Geschwindigkeit im Zeitintervall [a;b].
Die Aussage stimmt leider nicht.
Entweder: Ist $s$ die Orts-Zeit-Funktion, so berechnet man mit der
Sekantensteigung [mm]\frac{s(b)-s(a)}{b-a}[/mm] die Mittlere
Geschwindigkeit im Zeitintervall [a;b].
Oder:
Ist $v$ die Geschwindigkeits-Zeit-Funktion, so berechnet man mit der
Sekantensteigung [mm]\frac{v(b)-v(a)}{b-a}[/mm] die Mittlere
Beschleunigung im Zeitintervall [a;b].
Ansonsten: Siehe meine Antwort
Gruß,
Gono
|
|
|
|