www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Modellierung
Modellierung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modellierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 So 31.05.2009
Autor: Fry

Aufgabe
Sieben Freunde machen einen Ausflug nach Helgoland. Ehe sie nachmittags wieder das Schiff besteigen können, müssen sie durch die Zollkontrolle. Zwei von ihnen haben zu viele Zigaretten mitgenommen, die anderen haben keine "Schmuggelware" dabei. Da alle 7 dem Zollbeamten nichts zu verzollen haben, greift er sich auf gut Glück 3 heraus, um sie zu kontrollieren. Wie groß ist die Wkeit des Ereignisses E "Der Zollbeamte erwischt mindestens einen der beiden Schmuggler" ?

Haaalllo :),

also ich möchte gerne das obige Zufallsexperiment modellieren, allerdings als Stichprobe OHNE Beachtung der Reihenfolge und ohne Zurücklegen.
Die Wkeiten interessieren mich nicht.

Habe dann definiert:
P - Laplace-Verteilung
[mm] \Omega=\{(w_1,...,w_7),w_i\in\{0,1\} fuer 1\le i\le 7 und \summe_{i=1}^{7}w_i=3\} [/mm]

[mm] w_i=0 \hat= [/mm] Person i wird durchsucht
Kann ich [mm] \Omega [/mm] so definieren bzw geht es auch geschickter?

Wie müsste mein E denn aussehen?

Würde mich über eure Hilfe freuen. Danke !
Gruß
Fry

        
Bezug
Modellierung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 So 31.05.2009
Autor: Zwerglein

Hi, Fry,

> Sieben Freunde machen einen Ausflug nach Helgoland. Ehe sie
> nachmittags wieder das Schiff besteigen können, müssen sie
> durch die Zollkontrolle. Zwei von ihnen haben zu viele
> Zigaretten mitgenommen, die anderen haben keine
> "Schmuggelware" dabei. Da alle 7 dem Zollbeamten nichts zu
> verzollen haben, greift er sich auf gut Glück 3 heraus, um
> sie zu kontrollieren. Wie groß ist die Wkeit des
> Ereignisses E "Der Zollbeamte erwischt mindestens einen der
> beiden Schmuggler" ?
>  
> also ich möchte gerne das obige Zufallsexperiment
> modellieren, allerdings als Stichprobe OHNE Beachtung der
> Reihenfolge und ohne Zurücklegen.
>  Die Wkeiten interessieren mich nicht.
>  
> Habe dann definiert:
>  P - Laplace-Verteilung
>  [mm]\Omega=\{(w_1,...,w_7),w_i\in\{0,1\} fuer 1\le i\le 7 und \summe_{i=1}^{7}w_i=3\}[/mm]
>  
> [mm]w_i=0 \hat=[/mm] Person i wird durchsucht

Eine Anmerkung:
Müsste es nicht eher heißen
[mm] w_i= \red{1} \hat= [/mm] Person i wird durchsucht ?

>  Kann ich [mm]\Omega[/mm] so definieren bzw geht es auch
> geschickter?

(1) Ja, ich denke, so könnte man's definieren.
(2) Ob's geschickter ist, weiß ich nicht, aber ich tät's so machen:
[mm] \Omega [/mm] = [mm] \{ \{w_{1}; w_{2}; w_{3} \} / w_{i} \in \{ 1; 2; 3; 4; 5; 6; 7 \} alle \quad drei \quad verschieden \} [/mm]
also: Teilmengen mit je 3 verschiedenen ganzen Zahlen 1 [mm] \le w_{i} \le [/mm] 7.
  

> Wie müsste mein E denn aussehen?

Bei beiden Vorschlägen müsste man zunächst festlegen, welche beiden Leute die Schmuggler sind. Ohne Einschränkung der Allgemeinheit kann man z.B. die Nummern 1 und 2 dazu abstempeln (andernfalls müsste man die Leute halt umnummerieren).
Und dann würde ich jeweils das Gegenereignis formulieren:  [mm] \overline{E}= [/mm]
[mm] \{(0; 0; w_3,...,w_7),w_i\in\{0,1\} fuer 3\le i\le 7 und \summe_{i=1}^{7}w_i= 3 \} [/mm]

Auch bei meinem Vorschlag würde ich die Personen Nummer 1 und 2 als Schmuggler festlegen und dann mit dem Gegenereignis arbeiten.

Übrigens: Wozu eigentlich der ganze Aufwand?!
Es ist doch nur die Wahrscheinlichkeit gefragt!

mfG!
Zwerglein

Bezug
                
Bezug
Modellierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:46 So 31.05.2009
Autor: Fry

Hallo,

danke für deine Antwort.
Wie schon gesagt, die Wkeiten sind mir egal, ist ja keine Übungszettel Irgendwann muss man das Modellieren ja auch mal lernen. = )

LG
Fry

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de