www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Modellierung, Verteilung
Modellierung, Verteilung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modellierung, Verteilung: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:02 So 11.12.2011
Autor: ella87

Aufgabe
Ein Zufallsexperiment besteht aus dem Wurf eines roten und eines schwarzen Würfels.
Sei X die Zufallsvariable, die jedem Wurfergebnis [mm]\omega[/mm] die Augenzahl des roten Würfels und Y die Zufallsvariable, die jedem Wurfergebnis [mm]\omega[/mm] die Augenzahl des schwarzen Würfels zuordnet.
Die Zufallsvariable Z sei definiert durch: [mm]Z: \Omega \to \IR[/mm], [mm] Z(\omega) =min\{X(\omega), Y(\omega)\}[/mm].

(a) Geben Sie unter einer geeigneten Modellierung die Verteilung von Z an.
(b) Berechnen Sie den Erwartungswert E(Z)
(c) Berechnen Sie die Varianz Var(Z)

hi!

Ich weiß irgendwie nicht, wie ich das "modelliere" und dann die Verteilung angebe...

Ich habe:
[mm]X: \Omega \to \IR [/mm], [mm] \omega_1 \mapsto \{1,...,6\}[/mm]
[mm]Y: \Omega \to \IR [/mm], [mm] \omega_2 \mapsto \{1,...,6\}[/mm]

[mm]\omega = \{ (\omega_1 , \omega_2 )| \omega_i \in \{1,...6\} \} [/mm]

[mm]\#\omega = 36[/mm] es gibt also 36 unterscheidbare Zahlenkombinationen
[mm]P \left( \omega \right) =\bruch{1}{36}[/mm] die Wahrscheinlichkeit für das Eintreten jedes Wurfergebnisses ist gleich


jetzt zu Z:
[mm] Z(\omega) =min\{X(\omega), Y(\omega)\}[/mm]
müsste ja eigentlich gelten [mm] Z(\omega) \in \{1,...6 \}[/mm]

ich hab einfach mal durchgezählt:

[mm]P \left( Z \left( \omega \right) =1 \right) = \bruch {11}{36}[/mm]

[mm]P \left( Z \left( \omega \right) =2 \right) = \bruch {9}{36}[/mm]

[mm]P \left( Z \left( \omega \right) =3 \right) = \bruch {7}{36}[/mm]

[mm]P \left( Z \left( \omega \right) =4 \right) = \bruch {5}{36}[/mm]

[mm]P \left( Z \left( \omega \right) =5 \right) = \bruch {3}{36}[/mm]

[mm]P \left( Z \left( \omega \right) =6 \right) = \bruch {1}{36}[/mm]

das müsste doch eigentlich gemeint sein, oder?
Aber: wie schreibt man das sinnvoll auf????

        
Bezug
Modellierung, Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 So 11.12.2011
Autor: luis52

      
> das müsste doch eigentlich gemeint sein, oder?

Im Prinzip [ok]

>  Aber: wie schreibt man das sinnvoll auf????


Setze $ [mm] \Omega' [/mm] = [mm] \{ (\omega_1 , \omega_2 )| \omega_i \in \{1,...6\} \} [/mm] $ um von der obigen Ergebnismenge [mm] $\Omega$ [/mm] zu unterscheiden. Dann ist [mm] $Z:\Omega'\to\IR$ [/mm] mit [mm] $\omega'\mapsto Z(\omega')$ [/mm] mit der Wahrscheinlichkeitsverteilung $P(Z=z)=11/36_$ fuer $z=1_$, ... , $P(Z=z)=1/36_$ fuer $z=6_$.

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de