www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Modul und Ideal
Modul und Ideal < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modul und Ideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:59 Fr 18.06.2004
Autor: Dana22

Noch eine Aufgabe zu Modulen und diesmal Idealen. Was ist der Unterschied zwischen Modulen und Untermodulen? Was sind Ideale?! Ich weiß, ich hab absolut keine Ahnung!
Aber trotzdem würde ich gerne um einen Ansatz für den Beweis und um Hinweise zum Beweis bitten.

M, N seien R-Module und I, J Ideale in R. (R kommutativer Ring mit 1)
Zeige JM [mm] \subset [/mm] M ist ein Untermodul.

        
Bezug
Modul und Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Fr 18.06.2004
Autor: Stefan

Hallo Dana!

Also, die Definitionen kannst du dir ja wohl in deinem Vorlesungsskript anschauen. [buchlesen]

Okay, ich bin ja nicht so:


Definition: Ideal

Eine nichtleere Teilmenge $J$ eines Ringes $R$ heißt Ideal, wenn $J$ eine Untergruppe der additiven Gruppe $(R,+)$ von $R$ ist, und wenn $jr [mm] \in [/mm] J$ für alle $j [mm] \in [/mm] J$, [mm] $r\in [/mm] R$, gilt.


Definition: Modul (eigentlich: Linksmodul, aber das scheint ihr nicht zu unterscheiden)

Eine abelsche Gruppe $M$ mit Addition $+$ heißt ein $R$-(Links-)Modul, wenn es eine Verknüpfung $(r,m) [mm] \mapsto [/mm] rm$ von $R [mm] \times [/mm] M$ in $M$ existiert derart, dass für alle [mm] $r,r_1,r_2 \in [/mm] R$ und alle [mm] $m,m_1,m_2\in [/mm] M$ folgende Gleichungen gelten:

(a) [mm] $(r_1r_2)m [/mm] = [mm] r_1(r_2m)$, [/mm]
(b) [mm] $r(m_1 [/mm] + [mm] m_2) [/mm] = [mm] rm_1 [/mm] + [mm] rm_2$, [/mm]
(c) [mm] $(r_1 [/mm] + [mm] r_2)m [/mm] = r_1m + r_2m$,
(d) $1m = m$.


Definition: Untermodul

Es sei $M$ ein $R$-Modul. Eine nichtleere Teilmenge $U$ von $M$ heißt ein Untermodul von $M$, wenn die beiden folgenden Bedingungen erfüllt sind:

(a) [mm] $u_1 [/mm] - [mm] u_2 \in [/mm] U$ für alle [mm] $u_1,u_2 \in [/mm] U$,
(b) $r [mm] \cdot [/mm] u [mm] \in [/mm] U$ für alle $r [mm] \in [/mm] R$ und $u [mm] \in [/mm] U$.


Jetzt zu der Aufgabe:

Es sei also $M$ ein $R$-Modul, $I$ ein Ideal von $R$ und

$IM = [mm] \{x \in M\, :\, \exists (n \in \IN,\, r_1,\ldots,r_n \in I,\, m_1,\ldots,m_n \in M)\, : x = r_1m_1 + \ldots r_n m_n\}$. [/mm]

Zu zeigen ist, dass $IM$ ein Untermodul von $M$ ist.

Offenbar gilt: $0 [mm] \in [/mm] IM$.

Zu zeigen ist nun, dass mit $x [mm] \in [/mm] IM$ und $y [mm] \in [/mm] IM$ auch $x-y [mm] \in [/mm] IM$ gilt.

Sind aber:

$x = [mm] r_1 m_1 [/mm] + [mm] \ldots [/mm] + [mm] r_n m_n \in [/mm] IM$ (mit [mm] $r_1,\ldots,r_n \in [/mm] I$, [mm] $m_1,\ldots,m_n \in [/mm] M$),
$y = [mm] s_1 l_1 [/mm] + [mm] \ldots [/mm] + [mm] s_k l_k \in [/mm] IM$ (mit [mm] $s_1,\ldots,s_k \in [/mm] I$, [mm] $l_1,\ldots, l_k \in [/mm] M$),

dann gilt auch:

$x-y = [mm] r_1 m_1 [/mm] + [mm] \ldots [/mm] + [mm] r_n m_n [/mm] - [mm] s_1 l_1 [/mm] - [mm] \ldots [/mm] - [mm] s_k l_k \in [/mm] IM$,

nach Definition von $IM$.

Zu zeigen bleibt, dass mit $x [mm] \in [/mm] IM$ und $r [mm] \in [/mm] R$ auch $rx [mm] \in [/mm] IM$ gilt.

Für

$x = [mm] r_1 m_1 [/mm] + [mm] \ldots [/mm] + [mm] r_n m_n \in [/mm] IM$ (mit [mm] $r_1,\ldots,r_n \in [/mm] I$, [mm] $m_1,\ldots,m_n \in [/mm] M$)

und $r [mm] \in [/mm] R$ ist aber:

$rx = [mm] rr_1 m_1 [/mm] + [mm] \ldots rr_n m_n \in [/mm] IM$,

da $I$ ein Ideal ist und daher für alle [mm] $i=1,\ldots,n$ [/mm] die Beziehung

[mm] $\underbrace{r}_{\in R} \underbrace{r_i}_{\in I} \in [/mm] I$

gilt.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de