www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Modul und Ideal
Modul und Ideal < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modul und Ideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:07 Fr 18.06.2004
Autor: Dana22

Huch, na sowas, noch eine Aufgabe. OK, versprochen ist die letzte zu diesem Thema. :-)

M, N seien R - Moduln und I Ideal in R.
f : [mm] M \to N [/mm] sei ein Homomorphismus und [mm] I^n [/mm] = (0).
Zeige: f induziert einen Homomorphismus f' : mm] M/IM [mm] \to [/mm] N/IN [/mm] und f' ist surjektiv wenn f surjektiv ist.

        
Bezug
Modul und Ideal: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:43 Fr 18.06.2004
Autor: Dana22

R kommutativer Ring mit 1

Bezug
        
Bezug
Modul und Ideal: (verbessert!)
Status: (Antwort) fertig Status 
Datum: 14:23 Fr 18.06.2004
Autor: Julius

Alles Rote ist verbessert. Hier hat der blöde Julius ;-) die falsche Definition von [mm] $\red{IM}$ [/mm] genommen. (Stefan)

Hallo!

> M, N seien R - Moduln und I Ideal in R.
> f : [mm]M \to N[/mm] sei ein Homomorphismus und [mm]I^n[/mm] = (0).
>  Zeige: f induziert einen Homomorphismus f' : mm] M/IM [mm]\to[/mm]
> N/IN[/mm] und f' ist surjektiv wenn f surjektiv ist.

Im Moment sehe ich nicht, wo man die Voraussetzung [mm] $I^n=\{0\}$ [/mm] braucht, vielleicht kann mir da ja jemand helfen.

Also, ich definiere:

$f' : [mm] \begin{array}{ccc} M/IM & \to & N/IN \\[5pt] m + IM & \mapsto & f(m) + IN.\end{array}$. [/mm]

Es gilt:

[mm] $\red{IM=\{x \in M\, : \, \exists (n \in \IN, m_1,\ldots, m_n \in M, r_1,\ldots, r_n \in I)\, : \, x = r_1 n_1 + \ldots r_n m_n\}}$.
[/mm]

Nun muss man zeigen:

1) $f'$ ist wohldefiniert

Aus [mm] $\red{m-m' \in IM}$ [/mm] folgt aber die Existenz eines [mm] $\red{n \in \IN}$, [/mm] Elementen [mm] $\red{r_1,\ldots, r_n \in I}$ [/mm] und [mm] $\red{m_1,\ldots,m_n}$ [/mm] mit

[mm] $\red{m-m'=r_1 m_1 + \ldots r_n m_n}$. [/mm]


Daraus folgt:

[mm] $\red{f(m-m') = f(r_1 m_1 + \ldots + r_n m_n) = r_1 f(m_1) + \ldots r_n f(m_n) \in IN}$, [/mm]

also für $m,m' [mm] \in [/mm] M$ mit  $m+IM = m' +IM$:

$f(m+IM) - f(m'+IM) = (f(m) +IN) - ( f(m') + IN) = f(m-m') + IN = IN$.


2) $f'$ ist ein $R$-Modulhomomorphismus

Da $I$ ein Ideal ist, gilt für alle [mm] $m\in [/mm] M$ und $alle r [mm] \in [/mm] R$:

$r (m+IM) = rm + IM$.

Daraus folgt für $m [mm] \in [/mm] M$, $r [mm] \in [/mm] R$:

$f'(r (m+IM)) = f'(rm + IM) = f(rm) = rf(m)= r f'(m+IM)$.

Weiterhin gilt für $m,m' [mm] \in [/mm] M$:

$f'((m + IM)  + (m' + IM)) = f'((m+m') + IM) =f(m+m') = f(m) + f(m') = f'(m+IM) + f'(m' + IM)$.


3) $f'$ ist ein surjektiv, wenn $f$ surjektiv ist

Es sei $n +IN [mm] \in [/mm] N/IN$ beliebig vorgegeben. Dann gibt es, da $f$ surjektiv ist, ein $m [mm] \in [/mm] M$ mit $f(m)=n$. Es folgt:

$f'(m+IM) = f(m) = n +IN$.


Und, wo brauchte man jetzt die Voraussetzung [mm] $I^n=\{0\}$. [/mm] Sieht das jemand? Ich nicht. [verwirrt]

Liebe Grüße
Julius




Bezug
                
Bezug
Modul und Ideal: (verbessert!)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:10 Di 29.06.2004
Autor: Dana22

Hallo Julius,

vielen Dank für deine Hilfe. Volle Punktzahl gab es zwar nicht, trotzdem vielen vielen vielen Dank. Falls es dich interessiert, im Anhang befindet sich die Musterlösung, mit der man volle Punktzahl bekommen hätte.

Liebe Grüße Dana!

Bezug
                        
Bezug
Modul und Ideal: (verbessert!)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:23 Di 29.06.2004
Autor: Julius

Hallo Dana!

Ich finde, so geht das nicht.

Du stellst mir erst die falsche Aufgabenstellung und sagst mir dann, dass es für meine Lösung keine volle Punktzahl gab.

Du schriebst mir als Aufgabenstellung:

"Zeige:...f' ist surjektiv wenn f surjektiv ist".

Das habe ich gezeigt und dafür hätte es auch volle Punktzahl gegeben. Jetzt sehe ich aber in der Musterlösung, dass man aber auch die Umkehrung der Aussagen zeigen sollte, und die ist ja gerade das Problem. Da hätte man dann auch [mm] $I^n=\{0\}$ [/mm] gebraucht.

Also, so macht es keinen Spaß. Bitte schreibe demnächst die Aufgabenstellung richtig ab oder schaue hinterher erst einmal nach, woran es eigentlich lag, dass es keine volle Punktzahl gab.

Viele Grüße
Julius


Bezug
                                
Bezug
Modul und Ideal: (verbessert!)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:12 Di 29.06.2004
Autor: Dana22

Hallo Julius,

das sollte absolut kein Vorwurf sein, dass es keine volle Punktzahl gab!!!!

Nein, bitte versteh das nicht falsch!!!

Uns wurde gestern bei der Übungsrückgabe gesagt, dass man das "genau dann wenn" zeigen sollte. Dies war aber aus der Aufgabenstellung nicht ersichtlich!!!

Und nun dachte ich vielmehr, dir die Musterlösung von unserem Übungsleiter zu zeigen. Weil du in einem Beitrag geschrieben hast, "wozu braucht man nun das [mm] I^n [/mm] ?" Deswegen hab ich die Lösung reingestellt gehabt!

Und nicht um dich anzugreifen!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Ich bin dankbar, dass du uns überhaupt geholfen hast!!!!!!!!!!!!!!!!!!!!!!!!

Liebe Grüße Dana

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de