www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematica" - Modulare Logarithmen
Modulare Logarithmen < Mathematica < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematica"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modulare Logarithmen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:32 So 26.11.2006
Autor: Kiki3000

Aufgabe
Sei p prim und [mm] n=[\wurzel{p}]. [/mm] Dann gilt:
x [mm] \equiv log_a [/mm] b mod p [mm] \gdw a^r \equiv ba^{-qn} [/mm] mod p (1)
wobei x= qn + r mit 0 [mm] \le [/mm] q, r<n.

Aufgabe:
Die Äquivalenz (1) rechtfertigt die Vorgehensweise im folgenden Babystep-Giantstep-Verfahren zur Bestimmung  von modularen Logarithmen.
i) Bilden Sie eine Menge M mit den Elementen [mm] a^r [/mm] mod p für r=0,...,n-1.
ii) Vergleichen Sie, ob [mm] ba^{-qn} [/mm] mod p in M enthalten ist (q=0,...,n-1). Gilt [mm] a^r \equiv ba^{-qn} [/mm] mod p für ein Paar (q,r), so geben Sie den (minimalsten) modularen Logarithmus x= qn +r aus.
Hinweis: [mm] ba^{-qn} \equiv b(a^{-n})^q [/mm] mod p lässt sich aus [mm] b(a^{-n})^{q-1} a^{-n} [/mm] mod p, also aus der vorherigen Iteration, bestimmen.

Implementieren Sie diesen Algorithmus.

Hallo!
Also in Computeralgebra sollten wir die Programmieren, habe ich auch gemacht, aber es wird nichts ausgegeben. Also hier mein Programmcode:

Clear[BGV];
BGV[a_, b_, p_] := Module[{M, n},
    n = [mm] Floor[\wurzel{n}]; [/mm]
M = Table[PowerMod[a, r, p], {r, 0, n - 1}];
  For[q = 0 , q <= n - 1, q++,
    For[r = 0, r <= n - 1, r++,
      If[Mod[b*PowerMod[a, -q*n, p], p] == M[ [ r  ] ], Return[q*n + r]]]]]

Dann sollten wir den Algorithmus ausprobieren für
[mm] log_2 [/mm] 5 mod 7, [mm] log_5 [/mm] 8 mod 13 und [mm] log_{16643} [/mm] 3376 mod 104729.

Aber bei keiner passiert was, also muss in meinem Algorithmus irgendwas falsch sein. Ich denke, dass alles eigentlich so weit richtig ist, nur dass eine Kleinigkeit falsch ist. Vielleicht kennt sich jemand mit aus und könnte mir helfen. Das wäre super!

Danke schonmal, Vlg Kiki

        
Bezug
Modulare Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Di 28.11.2006
Autor: Martin243

Hallo,

ganz am Anfang musst du die Wurzel aus p ziehen, nicht aus n.

Außerdem fangen die Listen in Mathematica bei 1 an, so dass du in deiner If-Abfrage auf MMBr+1 zugreifen musst.

Allerdings funktioniert es für (2,5,7) immer noch nicht...


Gruß
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematica"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de