www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Möbius Transformation
Möbius Transformation < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Möbius Transformation: Abbildung auf obere Halbebene
Status: (Frage) beantwortet Status 
Datum: 02:05 So 24.02.2008
Autor: TRANSLTR

Aufgabe
Sei [mm] M_{1} [/mm] = {z [mm] \in \IC: [/mm] |z| < 1} die offene Kreisscheibe und [mm] M_{2} [/mm] = {z [mm] \in \IC: [/mm] Im(z) > 0} die obere Halbebene. Betrachte die Funktion
f: [mm] M_{1} [/mm] -> [mm] M_{2}, [/mm] f(z) = i [mm] \bruch{1 + z}{1 - z} [/mm]
a) Zeigen Sie, dass die Funktion f bijektiv ist.
b) Bestimmen Sie eine Formel für die inverse Funktion [mm] f^{-1}: M_{2} [/mm] -> [mm] M_{1} [/mm]

Zu a)
Bijektiv heisst die Funktion ist surjektiv (der ganze Bildbereich der oberenen Halbebene wird ausgenutzt) und injektiv (jeder Wert x wird auf ein eindeutiges f(x) abgebildet).
Ich habe mir gedacht, dass man die Surjektivität bestätigen kann, indem man Im(z) > 0 & Re(z) > 0 beweist.
i [mm] \bruch{1 + z}{1 - z} [/mm] = [mm] \bruch{i(x + iy) + i}{1 - (x + iy)} [/mm] = [mm] \bruch{ix - y^{2} + i}{(1 - x) - iy)}. [/mm]
Jetzt konjugiert erweitern (-> 3. Binom)
[mm] \bruch{(ix - y^{2} + i) (1 - x + iy)}{(1 - x)^{2} + y^{2})} [/mm]
= [mm] \bruch{-xy - y^{2} + xy^{2} - y)}{(1 - x)^{2} + y^{2})} [/mm] + i [mm] \bruch{-x^{2} - y^{3} + 1}{(1 - x)^{2} + y^{2})}. [/mm]
Hier komme ich nicht weiter..ich versteh' nicht wie jetzt der Real- und Imaginärteil > 0 sind...

Wie beweist man denn die Injektivität??

Zu b)
Kann man die Umkehrfunktion berechnen, indem man f(z) = Bild = b setzt und auf z auflöst? Konkret wäre das:
b = [mm] \bruch{iz + i}{1 - z} [/mm] || * (1 - z)
b - bz = iz + i
z(i + b) = b - i
z = [mm] \bruch{b - i}{i + b}. [/mm] Stimmt das denn?

Ich freue mich auf eure Lösungsvorschläge...



        
Bezug
Möbius Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 06:38 Mo 25.02.2008
Autor: Somebody


> Sei [mm]M_{1} = \{z \in \IC: |z| < 1\}[/mm] die offene Kreisscheibe
> und [mm]M_{2} = \{z \in \IC: Im(z) > 0\}[/mm] die obere Halbebene.
> Betrachte die Funktion
>  [mm]f: M_{1} \rightarrow M_{2}, f(z) = i \bruch{1 + z}{1 - z}[/mm]
>  a)
> Zeigen Sie, dass die Funktion f bijektiv ist.
>  b) Bestimmen Sie eine Formel für die inverse Funktion
> [mm]f^{-1}: M_{2}[/mm] -> [mm]M_{1}[/mm]
>  Zu a)
>  Bijektiv heisst die Funktion ist surjektiv (der ganze
> Bildbereich der oberenen Halbebene wird ausgenutzt) und
> injektiv (jeder Wert x wird auf ein eindeutiges f(x)
> abgebildet).
>  Ich habe mir gedacht, dass man die Surjektivität
> bestätigen kann, indem man Im(z) > 0 & Re(z) > 0 beweist.
>  i [mm]\bruch{1 + z}{1 - z}[/mm] = [mm]\bruch{i(x + iy) + i}{1 - (x + iy)}[/mm]
> = [mm]\bruch{ix - y^{2} + i}{(1 - x) - iy)}.[/mm]

[notok] [mm] $-y^2$ [/mm] ist falsch: sollte $-y$ sein.

>  Jetzt konjugiert
> erweitern (-> 3. Binom)
>  [mm]\bruch{(ix - \red{y^{2}} + i) (1 - x + iy)}{(1 - x)^{2} + y^{2})} = \bruch{-xy - y^{2} + xy^{2} - y)}{(1 - x)^{2} + y^{2})}+ i \bruch{-x^{2} - y^{3} + 1}{(1 - x)^{2} + y^{2})}.[/mm]
>  Hier
> komme ich nicht weiter..ich versteh' nicht wie jetzt der
> Real- und Imaginärteil > 0 sind...

Du musst nur zeigen, dass der Imaginärteil >0 ist. Dazu musst Du bedenken, dass [mm] $x^2+y^2<1$ [/mm] und $|x|,|y|< 1$ gilt.

>  
> Wie beweist man denn die Injektivität??

Z.B. wie in b)...

>  
> Zu b)
> Kann man die Umkehrfunktion berechnen, indem man f(z) =
> Bild = b setzt und auf z auflöst? Konkret wäre das:
>  b = [mm]\bruch{iz + i}{1 - z}[/mm] || * (1 - z)
>  b - bz = iz + i
>  z(i + b) = b - i
>  z = [mm]\bruch{b - i}{i + b}.[/mm] Stimmt das denn?

ja. und weil nach Teilaufgabe a) der Imaginärteil von $b$ > 0 ist, ist die Division durch $i+b$ auch immer möglich.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de