www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Momentenmethode
Momentenmethode < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Momentenmethode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:45 Mo 19.12.2011
Autor: MattiJo

Aufgabe
Sei (X1, . . . , Xn) eine Zufallsstichprobe. Bestimmen Sie (falls möglich) die Punktschätzer für den Parameter θ mit der Momentenmethode, falls

b) [mm] X_i [/mm] geometrisch verteilt ist mit Parameter θ ∈ (0, 1), d.h. P(X = k) = [mm] \Theta(1 [/mm] − [mm] \Theta)^{k-1} [/mm] , k = 1, 2, . . .

c) [mm] X_i [/mm] die Dichte f(x;θ) = [mm] \bruch{\Theta}{x^2}\cdot 1_{[\Theta, \infty)}(x) [/mm] für θ > 0 hat.

[mm] d)X_i [/mm] die Dichte  f (x; θ) = exp (-(x - [mm] \Theta)) \cdot 1_{[\Theta, \infty)}, [/mm] x ∈ [mm] \IR [/mm] hat.


Hallo,

derzeit sitze ich an der Momentenmethode. Mir ist diese Methode bisher leider nur bei der Normalverteilung schlüssig geworden, wo ich mit dem ersten Moment E(X) den Erwartungswert [mm] \mu [/mm] und mit dem zweiten Moment [mm] E(X^2) [/mm] zuzüglich des ersten Moments die Varianz schätzen kann.

Aber welches "Kochrezept" kann ich anwenden, um allgemein - bei anderen Verteilungen, wie beispielsweise den obigen - die jeweilgen Parameter schätzen zu können? Wenn ich keinen Erwartungswert, keine Varianz, sondern wie in den obigen Verteilungen ein [mm] \Theta [/mm] schätzen möchte?

Vielen Dank!

MattiJo

        
Bezug
Momentenmethode: Antwort
Status: (Antwort) fertig Status 
Datum: 07:56 Mo 19.12.2011
Autor: luis52

Moin,

i.a. ist [mm] $\operatorname{E}[X]$ [/mm] eine Funktion [mm] $g(\theta)$ [/mm] des zu schaetzenden Parameters [mm] $\theta$. [/mm] Andererseits ist [mm] $\bar X=\sum_{i=1}^n X_i/n$ [/mm] ein erwartungstreuer und konsistener Schaetzer fuer  [mm] $\operatorname{E}[X]$. [/mm] Ein MM-Schaetzer resultiert durch Aufloesen der Gleichung [mm] $\bar X=g(\hat\theta)$ [/mm] nach [mm] $\hat\theta$. [/mm]

Beispiel Aufgabe b) [mm] $\operatorname{E}[X]=1/p$: $1/\hat p=\bar [/mm] X [mm] \iff \hat p=1/\bar [/mm] X$. [mm] $1/\bar [/mm] X$ ist somit ein Schaetzer fuer $p$ nach MM fuer die geometrische Verteilung.

vg Luis


vg Luis

Bezug
                
Bezug
Momentenmethode: zur c)
Status: (Frage) beantwortet Status 
Datum: 13:14 Mo 19.12.2011
Autor: MattiJo

Vielen Dank!

Wenn ich das jetzt auf die c) anwenden möchte, heißt das doch, ich muss zunächst den Erwartungswert (1. Moment) bestimmen.
[mm] m_1 [/mm] = E(X) = [mm] \integral_{\Theta}^{\infty}{x f(x) dx} [/mm] = [mm] \integral_{\Theta}^{\infty}{x \bruch{\Theta}{x^2} dx} [/mm] = = [mm] \Theta \cdot \integral_{\Theta}^{\infty}{\bruch{1}{x} dx} [/mm] = [mm] \Theta \cdot [/mm] ln [mm] (x)^\infty_\Theta [/mm]

Heißt das, hier gibt es kein erstes Moment und ich kann die Momentenmethode nicht anwenden?

Bezug
                        
Bezug
Momentenmethode: Antwort
Status: (Antwort) fertig Status 
Datum: 14:13 Mo 19.12.2011
Autor: luis52

Moin

> Heißt das, hier gibt es kein erstes Moment und ich kann
> die Momentenmethode nicht anwenden?

In der Tat, so etwas kann passieren.

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de