www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Monotone Folge
Monotone Folge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotone Folge: "Frage"
Status: (Frage) beantwortet Status 
Datum: 22:47 Mi 16.11.2005
Autor: Limboman

Hallo Ihr! Habe eine knifflige Aufgabe für euch.

Sei x>0 ein Element eines archimedrisch angeordneten vollständigen Körpers K. Für n [mm] \in \IN [/mm] sei  [mm] a_{n} [/mm] die kleinste natürliche Zahl mit [mm] a_{n}^{2} \ge [/mm] x [mm] \* 7^{-n}. [/mm] Warum existiert diese? Weiterhin sei

[mm] b_{n}=a_{n} \* 7^{-n} [/mm]  und   [mm] c_{n}=(a_{n}-1) \* 7^{-n}. [/mm]

Zeigen Sie:

[mm] b_{n} [/mm] ist eine monoton fallende, [mm] c_{n} [/mm] eine monoton steigende Folge rationaler Zahlen; beide Folgen sind beschränkt; beide Folgen sind konvergent.

Eine möglichkeit die Monotonie Nachzuweisen war die Differenz zu bilden aber irgendwie gelingt das nicht.
Wir haben es auch schon mit Induktion versucht aber kommen noch nicht mal durch den Induktionsanfang richtig durch.

Als kleines Beispiel mit der Differenz führe ich unser Ergebniss mal auf.

zz: [mm] b_{n} [/mm] ist monoton fallend

[mm] b_{n} \ge b_{n+1} [/mm]
[mm] a_{n} \* 7^{-n} \ge a_{n+1} \* 7^{-n+1} [/mm]

also: [mm] b_{n+1} [/mm] - [mm] b_{n} [/mm] = [mm] a_{n+1} \* 7^{-n+1} [/mm] - [mm] a_{n} \* 7^{-n} [/mm] = [mm] 7^{-n}\*(a_{n+1} [/mm] - [mm] a_{n})\*7 [/mm]
                                    
=  [mm] \bruch{1}{7^{n}}\*(a_{n+1} [/mm] - [mm] a_{n})\*7 [/mm]

Wenn wir jetzt kein Fehler gemacht haben wären alle Werte positiv. Die Differenz muß allerdings ein [mm] \le [/mm] 0 ergeben damit es eine fallende Folge ist.
Mein Ergeniss ist also ein Gegenbeispiel zur Annahme.

Kann uns jemand helfen wir wissen einfach nicht mehr weiter.

        
Bezug
Monotone Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Do 17.11.2005
Autor: saxneat

Tach Limboman!

[mm] b_{n}=a_{n}*7^{-n} [/mm]
[mm] b_{n+1}=a_{n+1}*7^{-(n+1)} [/mm]

[mm] \Rightarrow [/mm]
[mm] b_{n+1}-b_{n}=a_{n+1}*7^{-(n+1)}-a_{n}*7^{-n}=(\bruch{1}{7}a_{n+1}-a_{n})*7^{-n} [/mm]

nun gilt [mm] a_{n}^{2}\ge\bruch{x}{7^{n}} [/mm] und [mm] a_{n+1}^{2}\ge\bruch{x}{7^{n+1}} [/mm] also

[mm] \bruch{x}{7^{n+1}}<\bruch{x}{7^{n}}\le a_{n}^{2} [/mm]
konstuktionsbedingt kann [mm] a_{n+1}^{2} [/mm] nicht größer als [mm] a_{n}^{2} [/mm] sein
also [mm] a_{n+1}\le a_{n} [/mm]
[mm] \Rightarrow [/mm]
[mm] 7^{-n}(\bruch{1}{7}a_{n+1}-a_{n})\le [/mm] 0
woraus die Monotonie folgt.

MfG
saxneat



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de