www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Monotone Klassen
Monotone Klassen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotone Klassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 So 09.11.2008
Autor: der_dennis

Hallo,

im Buch zur Masstheorie von Elstrodt wird eine monotone Klasse beschreiben als Menge für die gilt, dass der Durchschnitt jeder fallenden Folge Elementen der Klasse ebenfalls in der Klasse liegt (sowie umgekehrt die Vereinigung jeder aufsteigenden Folge von Elementen).

Irgendwie stehe ich da auf dem Schlauch: Ist denn nicht JEDE Menge eine monotone Klasse?

Was wäre ein Gegenbeispiel?

Danke Euch!

Dennis

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Monotone Klassen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Fr 14.11.2008
Autor: steffenhst

Hallo,

wenn du meinst, dass das Mengensystem X = {A} über [mm] \Omega [/mm] (Omega ist eine beliebige Grundmenge) aus einer einzelnen Menge besteht, dann hast du recht. Der Beweis ist nicht schwer. Setze [mm] A_{n} [/mm] = A für alle n [mm] \in \IN [/mm] und die Behauptung folgt. Diese Mengensysteme sind aber natürlich recht uninteressant.

Grüße, Steffen

Bezug
        
Bezug
Monotone Klassen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Fr 14.11.2008
Autor: Marcel

Hallo,

> Hallo,
>
> im Buch zur Masstheorie von Elstrodt wird eine monotone
> Klasse beschreiben als Menge für die gilt, dass der
> Durchschnitt jeder fallenden Folge Elementen der Klasse
> ebenfalls in der Klasse liegt (sowie umgekehrt die
> Vereinigung jeder aufsteigenden Folge von Elementen).
>
> Irgendwie stehe ich da auf dem Schlauch: Ist denn nicht
> JEDE Menge eine monotone Klasse?

ein Gegenbeispiel, also ein Beispiel für eine nicht monotone Klasse, wäre das folgende:
Betrachte [mm] $X=\IN\,.$ [/mm] Weiter sei [mm] $R:=\{A_m:\;m \in \IN\}\,,$ [/mm] wobei [mm] $A_m:=\{n \in \IN:\; n \le m\}\,, \;\;(m \in \IN)\,.$ [/mm]

(D.h. [mm] $\,R\,$ [/mm] besteht aus [mm] $A_1=\{1\}\,,$ $A_2=\{1,2\}\,,$ $A_3=\{1,2,3\}\,...$.) [/mm]

Insbesondere gilt $R [mm] \subset \text{Pot}(\IN)\,.$ [/mm]

Dann ist offensichtlich [mm] $(A_k)_k$ [/mm] eine steigende Folge von Elementen aus [mm] $\,R\,.$ [/mm] Weiter gilt aber [mm] $\bigcup_{k \in \IN}A_k=\IN\,.$ [/mm] Aber es ist [mm] $\IN \notin R\,.$ [/mm]

(P.S.: Bei mir gilt $0 [mm] \notin \IN\,.$) [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de