www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Monotonie einer Folge
Monotonie einer Folge < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 So 14.03.2010
Autor: Dr.Prof.Niemand

Hi,
ich habe eine Folge von der ich weiß, dass sie monoton fällt, aber ich bekomme es nicht hin das zu beweisen.
[mm] a_{k} [/mm] = [mm] (k+1)^{\bruch{1}{4}} [/mm] - [mm] k^{\bruch{1}{4}} [/mm]
Vielleicht hat ja jemand eine Lösung oder einen Tipp zur Bearbeitung.
Freue mich echt über alles, dass mir zur Lösung weiterhilft.

LG
Prof

        
Bezug
Monotonie einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 So 14.03.2010
Autor: wieschoo

Fallende Monotonie kannst du beweisen, indem du [mm] $a_n>a_{n+1}$ [/mm] beweist. Da gelingt dir indem du

[mm] $0
zeigst. Oder folgendes

[mm] $\frac{a_n}{a_{n+1}}>1$ [/mm]

Bezug
                
Bezug
Monotonie einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 So 14.03.2010
Autor: Dr.Prof.Niemand

Ich kenne die Vorgehensweise zum Nachweis von Monotonie, aber ich habe mit dieser Folge ein Problem...

Bezug
                        
Bezug
Monotonie einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 So 14.03.2010
Autor: steppenhahn

Hallo,

probiere folgendes:

[mm] $\sqrt[4]{k+1} [/mm] - [mm] \sqrt[4]{k} [/mm] = [mm] \frac{(\sqrt[4]{k+1} - \sqrt[4]{k})*(\sqrt[4]{k+1} + \sqrt[4]{k})}{\sqrt[4]{k+1} + \sqrt[4]{k}} [/mm] = [mm] \frac{\sqrt[2]{k+1} - \sqrt[2]{k}}{\sqrt[4]{k+1} + \sqrt[4]{k}} [/mm] = [mm] \frac{(\sqrt[2]{k+1} - \sqrt[2]{k})*(\sqrt[2]{k+1} + \sqrt[2]{k})}{(\sqrt[4]{k+1} + \sqrt[4]{k})*(\sqrt[2]{k+1} + \sqrt[2]{k})}$, [/mm]

nun nochmal 3. binomische Formel im Zähler und dann kann man die Monotonie ablesen, da der Nenner für wachsendes k immer größer wird.

Grüße,
Stefan

Bezug
                                
Bezug
Monotonie einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 So 14.03.2010
Autor: angela.h.b.


> Hallo,
>  
> probiere folgendes:
>  
> [mm]\sqrt[4]{k+1} - \sqrt[4]{k} = \frac{(\sqrt[4]{k+1} - \sqrt[4]{k})*(\sqrt[4]{k+1} + \sqrt[4]{k})}{\sqrt[4]{k+1} + \sqrt[4]{k}} = \frac{\sqrt[2]{k+1} - \sqrt[2]{k}}{\sqrt[4]{k+1} + \sqrt[4]{k}} = \frac{(\sqrt[2]{k+1} - \sqrt[2]{k})*(\sqrt[2]{k+1} + \sqrt[2]{k})}{(\sqrt[4]{k+1} + \sqrt[4]{k})*(\sqrt[2]{k+1} + \sqrt[2]{k})}[/mm],

Hallo,

Du erklärst hier gerade, wie man die Monotonie von [mm] b_k:=\sqrt[4]{k} [/mm] zeigen kann.

Gezeigt werden sollte aber die von [mm] a_k:=\sqrt[4]{k+1} [/mm] - [mm] \sqrt[4]{k} [/mm]

Gruß v. Angela

>  
> nun nochmal 3. binomische Formel im Zähler und dann kann
> man die Monotonie ablesen, da der Nenner für wachsendes k
> immer größer wird.
>  
> Grüße,
>  Stefan


Bezug
                                        
Bezug
Monotonie einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:15 So 14.03.2010
Autor: steppenhahn

Hallo Angela,

  

> > [mm]\red{a_{k}} = \sqrt[4]{k+1} - \sqrt[4]{k} = \frac{(\sqrt[4]{k+1} - \sqrt[4]{k})*(\sqrt[4]{k+1} + \sqrt[4]{k})}{\sqrt[4]{k+1} + \sqrt[4]{k}} = \frac{\sqrt[2]{k+1} - \sqrt[2]{k}}{\sqrt[4]{k+1} + \sqrt[4]{k}} = \frac{(\sqrt[2]{k+1} - \sqrt[2]{k})*(\sqrt[2]{k+1} + \sqrt[2]{k})}{(\sqrt[4]{k+1} + \sqrt[4]{k})*(\sqrt[2]{k+1} + \sqrt[2]{k})}[/mm],
>  
> Hallo,
>  
> Du erklärst hier gerade, wie man die Monotonie von
> [mm]b_k:=\sqrt[4]{k}[/mm] zeigen kann.
>  
> Gezeigt werden sollte aber die von [mm]a_k:=\sqrt[4]{k+1}[/mm] -
> [mm]\sqrt[4]{k}[/mm]

Das wird durch obiges auch erfüllt.
Ich forme [mm] a_{k} [/mm] um und sehe am Ende, das [mm] a_{k} [/mm] monoton fallend ist, weil es sich in einen Bruch umschreiben lässt, der für größeres k immer kleiner wird.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de