www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Monotonie zweier Funktionen
Monotonie zweier Funktionen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie zweier Funktionen: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 20:52 Mo 24.05.2010
Autor: svcds

Hi, also ich hab

f(x) = - [mm] \wurzel{x} [/mm] mit Intervall [mm] (0,\infty) [/mm]

Nun steh ich bzgl. der Monotonie auf dem Schlauch.

Wie sieht das da aus?

------------------

Die 2. Funktion ist f(x) = [mm] 2x^3 [/mm] - [mm] 3x^2 [/mm] - 12x. Die 1. Ableitung ist ja 6x² - 6x - 12.

Da hab ich die Extrema HP(-1/7) und TP(2/-20) berechnet. wie schreib ich das jetzt mit der Monotonie auf?

Also unser Dozent hat geschrieben, dass folgendes gilt(kennt ihr bestimmt):

wenn f'(x) > 0 =streng monoton steigend (analog <) und wenn f'(x) [mm] \ge [/mm] dann eben "nur" monoton steigend. Ich komm damit nicht klar, denn an den Extremstellen wird die f'(x) ja immer = 0, also wann ist eine f(x) STRENG monoton s/f und wann NORMAL monoton? Wie schreib ich die Intervalle auf?

Hat jemand ein Beispiel für mich, wo ich das sehen kann?

kann mir da jemand helfen?

glg knut

        
Bezug
Monotonie zweier Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Mo 24.05.2010
Autor: MontBlanc

Hallo,

[mm] f(x)=-\wurzel{x} [/mm]

[mm] f'(x)=\bruch{-1}{2\wurzel{x}} [/mm]

Nun ist $ [mm] \wurzel{x}>0\ \forall\ [/mm]  x>0 [mm] \Rightarrow \bruch{-1}{2\wurzel{x}}<0\ \forall\ [/mm]  x $ also streng monoton fallend.

Ist [mm] f(x)=2x^3-3x^2-12x [/mm] dann ist [mm] f'(x)=6x^2-6x-12 [/mm]

f'(x)=0 [mm] \Leftarrow [/mm] x=-1 oder x=2

f'(x) ist eine nach oben geöffnete Parabel. Damit hast du alle informationen die nötig sind um zu sehen, wo f'(x)>0 bzw. kleiner null ist. Schau dir den Graphen von f'(x) an. Dann kannst du es u.a. so aufschreiben.

f(x) ist streng monoton fallend genau dann wenn f'(x)<0 . f'(x)<0 in [a,b] .

f(x) ist streng monoton steigen genau dann wenn f'(x)>0 . f'(x)>0 in [mm] (-\infty,a] [/mm] und [mm] [b,\infty) [/mm] . Das sind halboffene bzw geschlossene Intervalle, insgesamt ist f(x) natürlich nicht monoton.

LG

Bezug
                
Bezug
Monotonie zweier Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Mo 24.05.2010
Autor: svcds

danke, will eigentlich nur wissen, wie ich di Intervalle aufschreiben muss und wo der Unterschied zwischen STRENG monoton und NORMAL monoton ist bzw. wie ich das nachprüfen muss.

Also ich hab dann bei der 2. Funktion die Intervalle

[-unendlich, -1) dann [-1,2] und (2,+unendlich) ?

Bezug
                        
Bezug
Monotonie zweier Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Mo 24.05.2010
Autor: MontBlanc

Hallo,

es wird geschrieben als:

[mm] (-\infty,-1] [/mm] , denn 1 ist im intervall für [mm] \infty [/mm] kannst du ja nicht wirklich eine grenze angeben. Bei -1 ist das Intervall also geschlossen, bei [mm] \infty [/mm] offen. für offen machst du eine normale Klammer , also ")" und für geschlossen eine eckige Klammer "["

dann [-1,2]

und [mm] [2,\infty) [/mm]

Lg

Bezug
                                
Bezug
Monotonie zweier Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:23 Mo 24.05.2010
Autor: svcds

dank dir, und dann setz ich einfach Zahlen größer als die 2 und die 1 ein, und guck was mit dem Wert der Ableitung passiert, richtig?

Bezug
                                        
Bezug
Monotonie zweier Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:06 Mo 24.05.2010
Autor: MontBlanc

Hallo,

ja das kannst du hier so machen. hängt einfach etwas von der funktion ab, bei ner parabel ist das natürlich recht easy.

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de