www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Münze 2x werfen
Münze 2x werfen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Münze 2x werfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 Sa 09.02.2013
Autor: Giraffe

Aufgabe
Dies ist eine mir selbst gestellte Aufg.:

Eine Münze (Kopf u. Zahl) soll 2x hintereinander geworfen werden.
Wie groß ist h (rel. Häufigkeit), dass beim letzten Wurf K nach oben zeigt?

Nabend,
natürlich habe ich mich gefragt, ob der erste Wurf zuvor dann noch relevant ist. Ich wusste es nicht u. habe deswegen ein Baumdiagramm
gemacht.
Am Ende rechts habe ich insges. 4 Einzel-Ereignisse:

[mm] p_K=\bruch{1}{2} [/mm]

[mm] p_Z=\bruch{1}{2} [/mm]

[mm] p_K=\bruch{1}{2} [/mm]

[mm] p_Z=\bruch{1}{2} [/mm]


1. Frage:
Da die Summe aller 4 Ereignisse leider nicht 1 ergibt, hätte ich überall

etwa [mm] \bruch{1}{4} [/mm] schreiben müssen?

2.Frage:
Nehmen wir an [mm] \bruch{1}{2} [/mm] sei richtig. Wie gr. ist h, dass K zu sehen ist.

Dafür gibt es genau 2 Ereignisse, nämlich
K-K  und
Z-K

Diese beiden Ereignisse müssen doch jetzt addiert werden!?!
Wäre dann 1, also 100% u. das kann nicht sein, weil nicht in jedem Fall K geworfen wird.

Also doch [mm] \bruch{1}{4}? [/mm]

Wie aber passt das zus. mit einem Pfad?
(ich habe 4 Pfade, ist mir schon klar; ich meine die Aufsplittg. am Anfang in oberen u. unteren Pfad, der blaue Kulli (geschwungene Klammer rechts) solls zeigen):

[Dateianhang nicht öffentlich]

Ich muss irgendeinen blöden banalen Denkfehler machen oder die Fragestellg. ist schon zum Scheitern.

Für Hilfe beim Denken vielen DANK!
Gute Nacht
Sabine


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Münze 2x werfen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Sa 09.02.2013
Autor: Fulla

Hallo Giraffe!

> Dies ist eine mir selbst gestellte Aufg.:
>  
> Eine Münze (Kopf u. Zahl) soll 2x hintereinander geworfen
> werden.
>  Wie groß ist h (rel. Häufigkeit), dass beim letzten Wurf
> K nach oben zeigt?
>  Nabend,
>  natürlich habe ich mich gefragt, ob der erste Wurf zuvor
> dann noch relevant ist. Ich wusste es nicht u. habe
> deswegen ein Baumdiagramm
>  gemacht.

Die Münze weiß ja nicht, dass sie gerade das zweite Mal geworfen wird und auch nicht, welches Ergebnis beim vorhergen Wurf vorlag...

Also ist der erste Wurf irrelevant und die Wahrscheinlichkeit für Kopf im zweiten Wurf ist 1/2.
Beachte, dass es sich hier um eine Wahrscheinlichkeit und nicht die relative Häufigkeit handelt! Bei der realen Durchführung des Experiments gibt die rel. Häufigkeit den Anteil der Köpfe in den zweiten Würfen an. Die Wahrscheinlichkeit dagegen sagt dir, wie groß die rel. Häufigkeit wahrscheinlich ist. Beide Zahlen können voneinander abweichen! (Wenn du das Experiment allerdings sehr oft durchführst, werden sie sich einander immer mehr annähern (-> empirisches Gesetz der großen Zahlen).)

>  Am Ende rechts habe ich insges. 4 Einzel-Ereignisse:
>  
> [mm]p_K=\bruch{1}{2}[/mm]
>  
> [mm]p_Z=\bruch{1}{2}[/mm]
>  
> [mm]p_K=\bruch{1}{2}[/mm]
>  
> [mm]p_Z=\bruch{1}{2}[/mm]
>  
>
> 1. Frage:
>  Da die Summe aller 4 Ereignisse leider nicht 1 ergibt,
> hätte ich überall
>
> etwa [mm]\bruch{1}{4}[/mm] schreiben müssen?

Ja, denn du musst die Wahrscheinlichkeiten entlang der Pfade multiplizieren. Beim ersten Pfad (der für KK) wäre [mm]P(KK)=\frac 12\cdot\frac 12=\frac 14[/mm]. Bei den anderen ist die W. natürlich auch [mm]\frac 14[/mm].

> 2.Frage:
>  Nehmen wir an [mm]\bruch{1}{2}[/mm] sei richtig. Wie gr. ist h,
> dass K zu sehen ist.
>  
> Dafür gibt es genau 2 Ereignisse, nämlich
>  K-K  und
>  Z-K
>  
> Diese beiden Ereignisse müssen doch jetzt addiert
> werden!?!
>  Wäre dann 1, also 100% u. das kann nicht sein, weil nicht
> in jedem Fall K geworfen wird.
>  
> Also doch [mm]\bruch{1}{4}?[/mm]

Ja, es ist [mm]P(\text{Kopf beim 2. Wurf})=P(KK)+P(ZK)=\frac 14 +\frac 14=\frac 12[/mm]

> Wie aber passt das zus. mit einem Pfad?
> (ich habe 4 Pfade, ist mir schon klar; ich meine die
> Aufsplittg. am Anfang in oberen u. unteren Pfad, der blaue
> Kulli (geschwungene Klammer rechts) solls zeigen):
>  
> [Dateianhang nicht öffentlich]
>  
> Ich muss irgendeinen blöden banalen Denkfehler machen oder
> die Fragestellg. ist schon zum Scheitern.
>  
> Für Hilfe beim Denken vielen DANK!
>  Gute Nacht
>  Sabine

Nacht :-)

Lieben Gruß,
Fulla


Bezug
                
Bezug
Münze 2x werfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 Sa 09.02.2013
Autor: Giraffe

Hallo lieber Fulla,

danke für deine Antw.!!!!
Grrrr, ich hatte es vergessen, dass mit der Multiplikat.Regel entlang eines Pfades. Dann passts auch mit 1/4.

Aber eines ist jetzt nicht mehr klar:
Experimente sind doch ohnehin nur die Vorstufe für die "Hochrechng.".
Ich meine zum Experiment gehört das gr. H für absolute Häufigkeit, die bezieht sich auf die Praxis.
Das kl. h steht für rel. Häufigk. u. sie ist theoretisch.
Du:

> Beachte, dass es sich hier um p und nicht h handelt!
> p sagt dir, wie groß h wahrscheinlich ist.

Kannst du bitte, DEN Unterschied bitte noch mit einem weiteren Satz erläutern?

> p sagt dir, wie groß h wahrscheinlich ist.

Klingt irgendwie so ähnlich u. ich kriege es nicht auseinander (ich hasse auch Aussagenlogik, daran erinnerts mich grad)

-------------------------------------

> Bei der realen Durchführung des Experiments gibt h an, dass ....

Bei einem praktischen Experiment gab es für mich bislang kein h, sondern nur H.
Sicher vermessen zu fragen, wer von uns beiden ....
Deswegen so:
Wie komme ich von einem H zu dem h?
Bsp. von insges. 4 Würfen wurde 3x Kopf geworfen, dann [mm] H_K=3 [/mm]
Und h= ___?

Jetzt aber wirkl. Gute Nacht
Sabine



Bezug
                        
Bezug
Münze 2x werfen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Sa 09.02.2013
Autor: Fulla

Liebe Giraffe,

vereinfachen wir das Beispiel mal zu einem einfachen Münzwurf und betrachten das Ergebnis "Kopf" (K).
Angenommen du wirfst 100-mal, dann könnte die Ergebnisse etwa so aussehen:
Kopf: 53
Zahl: 47

Die absolute Häufigkeit für Kopf ist also 53, oder in der von dir erwähnten Notation [mm]H_K=53[/mm].

Für die relative Häufigkeit gilt [mm]\text{rel. Häufigkeit}=\frac{\text{abs. Häufigkeit}}{\text{Anz. der Durchführungen}}[/mm]. Hier: [mm]h_K=\frac{53}{100}=0,53[/mm].

Die Wahrscheinlichkeit [mm]P(K)[/mm] ist aber [mm]\frac 12[/mm].

Wirfst du die Münze 1000-mal, bekommst du vielleicht [mm]h_K=\frac{497}{1000}=0,497[/mm]
Und wenn du noch öfter wirfst, wird [mm]h_K[/mm] immer näher bei 0,5 liegen. Mit der Bezeichnung [mm]h_K(n)[/mm] für die rel. Häufigkeit für "Kopf" bei n Versuchen gilt: [mm]P(K)=\lim_{n\to\infty}h_K(n)[/mm].

Zum Berechnen der Wahrscheinlichkeit ist das allerdings weniger brauchbar. Da berechnet man [mm]\frac{\text{Anzahl der günstigen Möglichkeiten}}{\text{Anzahl aller Möglichkeiten}}[/mm]. Hier ergibt sich demnach [mm]P(K)=\frac 12[/mm].


Lieben Gruß,
Fulla


Bezug
                                
Bezug
Münze 2x werfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:08 Mo 11.02.2013
Autor: Giraffe

das war ja alles der Reihe nach
sehr schön plausibel.

Ich habe alles gut verstanden - hast du sehr gut strukturiert u. aufgebaut.

GW kenne ich bisher nur als Asymptote, also v. Exponential-Fkt.
Aber ich ahne, dass der Begriff GW noch viel bedeutender ist. Deswegen freut es mich sehr, dass wenn h zu P wird, das dieser Prozeß auch GW ist.
Auch sehr gut, dass du die korrekte Schreibweise aufgeschrieben hast u. auch noch gleich dazu gesagt hast, dass man es mit lim aber nicht berechnet.

Super, ich freue mich,
denn jetzt ist alles klar.
Vielen DANK!!!

Ach so u. noch was: Ich hatte auch vergessen, dass sich h bildet, wenn der Quotient im Zähler das H hat (Nenner Anz. aller...)
Also, vielen DANK für die Auffrisch-Spritze.
Wenn ich könnte würde ich gleich 100 Spritzen bestellen ;-)


Bezug
                                        
Bezug
Münze 2x werfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:33 Mo 11.02.2013
Autor: Fulla

Freut mich, dass ich dir weiter helfen konnte! ;-)

(Weitere Spritzen bekommst du bestimmt bei deiner nächsten Frage...)


Bezug
                                                
Bezug
Münze 2x werfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:29 Mo 11.02.2013
Autor: Al-Chwarizmi


> Freut mich, dass ich dir weiter helfen konnte! ;-)
>  
> (Weitere Spritzen bekommst du bestimmt bei deiner nächsten
> Frage...)



Ach, jetzt geht mir endlich ein Licht auf:

Haben manche Leute wohl einfach so eine Scheu vor
Mathematik, so wie manche eine Zahnarzt-Phobie
haben: einfach wegen dem unangenehmen Pieks
der Spritze ?
Wenn die nur wüssten, wie groß die Erleichterung
ist, wenn man die Behandlung (oder die ersten
Lernschritte) überstanden hat ...

LG ,    Al      :-)  


Bezug
                                                        
Bezug
Münze 2x werfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:23 Di 19.02.2013
Autor: Giraffe

Fulla
> > Freut mich, dass ich dir weiter helfen konnte! ;-)
> > (Weitere Spritzen bekommst du bestimmt bei deiner nächsten
> > Frage...)

Al-Chwarizmi

> Ach, jetzt geht mir endlich ein Licht auf:

Ich glaube hier ist eine andere Lampe gemeint.

>  Haben manche Leute wohl einfach so eine Scheu vor
>  Mathematik, so wie manche eine Zahnarzt-Phobie
>  haben: einfach wegen dem unangenehmen Pieks
>  der Spritze?
>  Wenn die nur wüssten, wie groß die Erleichterung
>  ist, wenn man die Behandlung (oder die ersten
>  Lernschritte) überstanden hat ...

Ich glaube es war etwas Anderes gemeint:
Ich muss mir hier alles mühsam, ja MÜHSAM erarbeiten, es dauert jedenfalls sehr lange. Zu einem Teil wäre es mir deshalb ganz lieb, wenn man dieses Wissen in Form von Spritzen verabreichen könnte ;-)  
Das wäre doch was.

>  Wenn die nur wüssten, wie groß die Erleichterung
>  ist, wenn die Behandlung überstanden ist ...

Ich habe es jetzt schon 2x erlebt:
Einmal sollt ich eine 20 cm lange Spritze in den Arm bekommen. Sie sollte da reingehen, wo der Unterarm schon angefangen hat u. soweit reingeschoben werden, bis fast zum Handgelenk. Ohnmächtig bin ich nicht geworden, aber ich habe andere deutl. körperl. Reaktionen gezeigt (Schweißausbruch) - pure Angst. Und was war?
Nix war, hat gepieckt, wie immer, aber das war es auch.
Das andere war die Punktion der Schilddrüse. Ärztin sagte: Tja, das Problem, dass wir durch den Knorpel durchmüssen u. da entsteht Druck u. der ist unangenehm. Da habe ich dann gekniffen. Aber ein paar Jahre später konnte ich mich nicht mehr drücken. Ich also hin, in so eine radiolog. Praxis. Ich wollte nur einen Termin, aber das gr. Glück war, dass ich gleich dableiben konnte, weil jmd. abgesagt hatte. Die Zeit im Wartezimmer war nicht schön. Als ich dann da lag, durfte ich nicht schlucken, nicht atmen, mich nicht bewegen. Und wieder:
Es war nichts los. Lächerlich. Kein Knorpel, kein Druck, nix. Es hat wie immer nur gepieckt u. das wars, dann war auch schon alles vorbei. Ich habe mich regelrecht geschämt für das Theater u. den Aufstand, den ich vorher gemacht habe.
Vielleicht tröstet es andere!?!

>  Wenn die nur wüssten, wie groß die Erleichterung
>  ist, wenn man die Behandlung überstanden hat ...

LG
Sabine


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de